December  2012, 32(12): 4183-4194. doi: 10.3934/dcds.2012.32.4183

A generic property of exact magnetic Lagrangians

1. 

ICEX, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil

2. 

CAF, Universidade Federal de Vicosa, Florestal, MG 35690-000, Brazil

Received  June 2011 Revised  May 2012 Published  August 2012

We prove that for the set of Exact Magnetic Lagrangians the pro-perty “There exist finitely many static classes for every cohomology class" is generic. We also prove some dynamical consequences of this property.
Citation: Mário Jorge Dias Carneiro, Alexandre Rocha. A generic property of exact magnetic Lagrangians. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4183-4194. doi: 10.3934/dcds.2012.32.4183
References:
[1]

P. Bernard and G. Contreras, A generic property offamilies of Lagrangian systems,, Annals of Mathematics, 167 (2008), 1099.  doi: 10.4007/annals.2008.167.1099.  Google Scholar

[2]

P. Bernard, On the Conley decomposition of Mather sets,, Rev. Mat. Iberoamericana, 26 (2010), 115.  doi: 10.4171/RMI/596.  Google Scholar

[3]

G. Contreras and R. Iturriaga, "Global Minimizers of Autonomous Lagrangians,", 22 Colóquio Brasileiro deMatemática, (1999).   Google Scholar

[4]

G. Contreras and G. Paternain, Connecting orbitsbetween static classes for generic Lagrangian systems,, Topology, 41 (2002), 645.  doi: 10.1016/S0040-9383(00)00042-2.  Google Scholar

[5]

A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics,", Cambridge Studies in Advanced Mathematics, (2010).   Google Scholar

[6]

R. Mañé, Generic properties and problems ofminimizing measure of Lagrangian dynamical systems,, Nonlinearity, 9 (1996), 273.   Google Scholar

[7]

J. Mather, Action minimizing invariant measuresfor positive definite Lagrangian Systems,, Math. Zeitschrift, 207 (1991), 169.  doi: 10.1007/BF02571383.  Google Scholar

[8]

M. Paternain and G. Paternain, Critical Values ofautonomous Lagrangian systems,, Comment. Math. Helvetici, 72 (1997), 481.  doi: 10.1007/s000140050029.  Google Scholar

show all references

References:
[1]

P. Bernard and G. Contreras, A generic property offamilies of Lagrangian systems,, Annals of Mathematics, 167 (2008), 1099.  doi: 10.4007/annals.2008.167.1099.  Google Scholar

[2]

P. Bernard, On the Conley decomposition of Mather sets,, Rev. Mat. Iberoamericana, 26 (2010), 115.  doi: 10.4171/RMI/596.  Google Scholar

[3]

G. Contreras and R. Iturriaga, "Global Minimizers of Autonomous Lagrangians,", 22 Colóquio Brasileiro deMatemática, (1999).   Google Scholar

[4]

G. Contreras and G. Paternain, Connecting orbitsbetween static classes for generic Lagrangian systems,, Topology, 41 (2002), 645.  doi: 10.1016/S0040-9383(00)00042-2.  Google Scholar

[5]

A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics,", Cambridge Studies in Advanced Mathematics, (2010).   Google Scholar

[6]

R. Mañé, Generic properties and problems ofminimizing measure of Lagrangian dynamical systems,, Nonlinearity, 9 (1996), 273.   Google Scholar

[7]

J. Mather, Action minimizing invariant measuresfor positive definite Lagrangian Systems,, Math. Zeitschrift, 207 (1991), 169.  doi: 10.1007/BF02571383.  Google Scholar

[8]

M. Paternain and G. Paternain, Critical Values ofautonomous Lagrangian systems,, Comment. Math. Helvetici, 72 (1997), 481.  doi: 10.1007/s000140050029.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[2]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[12]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[13]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[14]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[15]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[16]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[17]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]