-
Previous Article
Entropy-expansiveness for partially hyperbolic diffeomorphisms
- DCDS Home
- This Issue
-
Next Article
On a double penalized Smectic-A model
A generic property of exact magnetic Lagrangians
1. | ICEX, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brazil |
2. | CAF, Universidade Federal de Vicosa, Florestal, MG 35690-000, Brazil |
References:
[1] |
P. Bernard and G. Contreras, A generic property offamilies of Lagrangian systems, Annals of Mathematics, 167 (2008), 1099-1108.
doi: 10.4007/annals.2008.167.1099. |
[2] |
P. Bernard, On the Conley decomposition of Mather sets, Rev. Mat. Iberoamericana, 26 (2010), 115-132.
doi: 10.4171/RMI/596. |
[3] |
G. Contreras and R. Iturriaga, "Global Minimizers of Autonomous Lagrangians," 22 Colóquio Brasileiro deMatemática, 1999. |
[4] |
G. Contreras and G. Paternain, Connecting orbitsbetween static classes for generic Lagrangian systems, Topology, 41 (2002), 645-666.
doi: 10.1016/S0040-9383(00)00042-2. |
[5] |
A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics," Cambridge Studies in Advanced Mathematics, 2010. |
[6] |
R. Mañé, Generic properties and problems ofminimizing measure of Lagrangian dynamical systems, Nonlinearity, 9 (1996), 273-310. |
[7] |
J. Mather, Action minimizing invariant measuresfor positive definite Lagrangian Systems, Math. Zeitschrift, 207 (1991), 169-207.
doi: 10.1007/BF02571383. |
[8] |
M. Paternain and G. Paternain, Critical Values ofautonomous Lagrangian systems, Comment. Math. Helvetici, 72 (1997), 481-499.
doi: 10.1007/s000140050029. |
show all references
References:
[1] |
P. Bernard and G. Contreras, A generic property offamilies of Lagrangian systems, Annals of Mathematics, 167 (2008), 1099-1108.
doi: 10.4007/annals.2008.167.1099. |
[2] |
P. Bernard, On the Conley decomposition of Mather sets, Rev. Mat. Iberoamericana, 26 (2010), 115-132.
doi: 10.4171/RMI/596. |
[3] |
G. Contreras and R. Iturriaga, "Global Minimizers of Autonomous Lagrangians," 22 Colóquio Brasileiro deMatemática, 1999. |
[4] |
G. Contreras and G. Paternain, Connecting orbitsbetween static classes for generic Lagrangian systems, Topology, 41 (2002), 645-666.
doi: 10.1016/S0040-9383(00)00042-2. |
[5] |
A. Fathi, "Weak KAM Theorem in Lagrangian Dynamics," Cambridge Studies in Advanced Mathematics, 2010. |
[6] |
R. Mañé, Generic properties and problems ofminimizing measure of Lagrangian dynamical systems, Nonlinearity, 9 (1996), 273-310. |
[7] |
J. Mather, Action minimizing invariant measuresfor positive definite Lagrangian Systems, Math. Zeitschrift, 207 (1991), 169-207.
doi: 10.1007/BF02571383. |
[8] |
M. Paternain and G. Paternain, Critical Values ofautonomous Lagrangian systems, Comment. Math. Helvetici, 72 (1997), 481-499.
doi: 10.1007/s000140050029. |
[1] |
Radu Saghin. On the number of ergodic minimizing measures for Lagrangian flows. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 501-507. doi: 10.3934/dcds.2007.17.501 |
[2] |
Jon Chaika, Howard Masur. There exists an interval exchange with a non-ergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289-304. doi: 10.3934/jmd.2015.9.289 |
[3] |
Kaizhi Wang. Action minimizing stochastic invariant measures for a class of Lagrangian systems. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1211-1223. doi: 10.3934/cpaa.2008.7.1211 |
[4] |
Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018 |
[5] |
Mario Jorge Dias Carneiro, Rafael O. Ruggiero. On the graph theorem for Lagrangian minimizing tori. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6029-6045. doi: 10.3934/dcds.2018260 |
[6] |
Ian D. Morris. Ergodic optimization for generic continuous functions. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 383-388. doi: 10.3934/dcds.2010.27.383 |
[7] |
Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379 |
[8] |
Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135 |
[9] |
Oliver Jenkinson. Every ergodic measure is uniquely maximizing. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 383-392. doi: 10.3934/dcds.2006.16.383 |
[10] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[11] |
Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121 |
[12] |
Alexandre Rocha, Mário Jorge Dias Carneiro. A dynamical condition for differentiability of Mather's average action. Journal of Geometric Mechanics, 2014, 6 (4) : 549-566. doi: 10.3934/jgm.2014.6.549 |
[13] |
Alfonso Sorrentino. Computing Mather's $\beta$-function for Birkhoff billiards. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5055-5082. doi: 10.3934/dcds.2015.35.5055 |
[14] |
Rodolfo Ríos-Zertuche. Characterization of minimizable Lagrangian action functionals and a dual Mather theorem. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2615-2639. doi: 10.3934/dcds.2020143 |
[15] |
Jinjun Li, Min Wu. Generic property of irregular sets in systems satisfying the specification property. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 635-645. doi: 10.3934/dcds.2014.34.635 |
[16] |
Sangtae Jeong, Chunlan Li. Measure-preservation criteria for a certain class of 1-lipschitz functions on Zp in mahler's expansion. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3787-3804. doi: 10.3934/dcds.2017160 |
[17] |
Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807 |
[18] |
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 |
[19] |
Kaizhi Wang, Lin Wang, Jun Yan. Aubry-Mather theory for contact Hamiltonian systems II. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 555-595. doi: 10.3934/dcds.2021128 |
[20] |
Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]