• Previous Article
    Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows
  • DCDS Home
  • This Issue
  • Next Article
    Entropy-expansiveness for partially hyperbolic diffeomorphisms
December  2012, 32(12): 4209-4227. doi: 10.3934/dcds.2012.32.4209

Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway, Norway

2. 

Centre of Mathematics for Applications, University of Oslo, NO-0316 Oslo, Norway

Received  June 2011 Revised  January 2012 Published  August 2012

We show existence of global conservative solutions of the Cauchy problem for the Camassa--Holm equation $u_t-u_{txx}+\kappa u_x+3uu_x-2u_xu_{xx}-uu_{xxx}=0$ with nonvanishing and distinct spatial asymptotics.
Citation: Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209
References:
[1]

M. Bendahmane, G. M. Coclite and K. H. Karlsen, $H^1$-perturbations of smooth solutions for a weakly dissipative hyperelastic-rod wave equation,, Mediterranean Journal of Mathematics, 3 (2006), 419.   Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.   Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Analysis and Applications, 5 (2007), 1.   Google Scholar

[4]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl., 94 (2010), 68.   Google Scholar

[5]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solutions,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[6]

R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[7]

A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 41 (2005).   Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Rat. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[10]

K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation,, J. Differential Equations, 250 (2011), 1460.  doi: 10.1016/j.jde.2010.07.006.  Google Scholar

[11]

K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the Camassa-Holm equation on the line,, Discrete Contin. Dyn. Syst., ().   Google Scholar

[12]

H. Holden and X. Raynaud, Global conservative solutions for the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[13]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.  doi: 10.1016/j.jde.2006.09.007.  Google Scholar

[14]

H. Holden and X. Raynaud, Dissipative solutions of the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.  doi: 10.3934/dcds.2009.24.1047.  Google Scholar

[15]

H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation,, Ann. Inst. Fourier (Grenoble), 58 (2008), 945.  doi: 10.5802/aif.2375.  Google Scholar

[16]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation,, J. Differential Equations, 217 (2005), 393.  doi: 10.1016/j.jde.2004.09.007.  Google Scholar

[17]

J. Lenells, Classification of all traveling-wave solutions for some nonlinear dispersive equations,, Phil. Trans. R. Soc. A, 365 (2007), 2291.  doi: 10.1098/rsta.2007.2009.  Google Scholar

show all references

References:
[1]

M. Bendahmane, G. M. Coclite and K. H. Karlsen, $H^1$-perturbations of smooth solutions for a weakly dissipative hyperelastic-rod wave equation,, Mediterranean Journal of Mathematics, 3 (2006), 419.   Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.   Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Analysis and Applications, 5 (2007), 1.   Google Scholar

[4]

A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation,, J. Math. Pures Appl., 94 (2010), 68.   Google Scholar

[5]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solutions,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[6]

R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[7]

A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 41 (2005).   Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Rat. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[10]

K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation,, J. Differential Equations, 250 (2011), 1460.  doi: 10.1016/j.jde.2010.07.006.  Google Scholar

[11]

K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the Camassa-Holm equation on the line,, Discrete Contin. Dyn. Syst., ().   Google Scholar

[12]

H. Holden and X. Raynaud, Global conservative solutions for the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[13]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.  doi: 10.1016/j.jde.2006.09.007.  Google Scholar

[14]

H. Holden and X. Raynaud, Dissipative solutions of the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.  doi: 10.3934/dcds.2009.24.1047.  Google Scholar

[15]

H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation,, Ann. Inst. Fourier (Grenoble), 58 (2008), 945.  doi: 10.5802/aif.2375.  Google Scholar

[16]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation,, J. Differential Equations, 217 (2005), 393.  doi: 10.1016/j.jde.2004.09.007.  Google Scholar

[17]

J. Lenells, Classification of all traveling-wave solutions for some nonlinear dispersive equations,, Phil. Trans. R. Soc. A, 365 (2007), 2291.  doi: 10.1098/rsta.2007.2009.  Google Scholar

[1]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[2]

Li Yang, Chunlai Mu, Shouming Zhou, Xinyu Tu. The global conservative solutions for the generalized camassa-holm equation. Electronic Research Archive, 2019, 27: 37-67. doi: 10.3934/era.2019009

[3]

Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809

[4]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[5]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[6]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[7]

Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347

[8]

Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505

[9]

Octavian G. Mustafa. Global conservative solutions of the Dullin-Gottwald-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 575-594. doi: 10.3934/dcds.2007.19.575

[10]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[11]

Xinglong Wu, Boling Guo. Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3211-3223. doi: 10.3934/dcds.2013.33.3211

[12]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[13]

Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827

[14]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[15]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[16]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[17]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[18]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[19]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[20]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]