• Previous Article
    Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$
  • DCDS Home
  • This Issue
  • Next Article
    Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics
December  2012, 32(12): 4229-4246. doi: 10.3934/dcds.2012.32.4229

Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla

2. 

LANI, UFR SAT, Université Gaston Berger, Saint-Louis, BP 234, Senegal

Received  July 2010 Revised  May 2012 Published  August 2012

In this paper, we study a conditional long-time stable fully discrete finite element scheme for a Ginzburg-Landau model for nematic liquid crystal flow. We also obtain its time asymptotic convergence (when number of time steps go to infinity, fixed time step and mesh size) towards a unique critical point of the elastic energy subject to the finite element subspace. Finally, we estimate some convergence rates towards this limit critical point. To prove convergence of the whole sequence, a Lojasiewicz type inequality is used.
    Moreover, we extend these results to other schemes given in [3] and [10].
Citation: Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229
References:
[1]

R. A. Adams, "Sobolev Spaces,'', Academic Press, (1975).   Google Scholar

[2]

S. Bartels and A. Prohl, Constraint preserving implicit finite element discretization of harmonic map heat flow into spheres,, Math. Comp., 76 (2007), 1847.  doi: 10.1090/S0025-5718-07-02026-1.  Google Scholar

[3]

R. Becker, X. Feng and A. Prohl, Finite element approximations of the Ericken-Leslie model for nematic liquid crystal flow,, SIAM J. Numer. Anal., 46 (2008), 1704.  doi: 10.1137/07068254X.  Google Scholar

[4]

B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model,, Nonlinear Analysis, 71 (2009), 539.  doi: 10.1016/j.na.2008.10.092.  Google Scholar

[5]

B. Climent-Ezquerra, F. Guillén-González and M. A. Rodríguez-Bellido, Stability for nematic liquid crystal with stretching terms, , International Journal of Bifurcation and Chaos, 20 (2010), 2937.  doi: 10.1142/S0218127410027477.  Google Scholar

[6]

J. Ericksen, Continuum theory of nematic liquid crystals,, Res. Mechanica., 21 (1967), 381.   Google Scholar

[7]

V. Girault and R. A. Raviart, "Finite Element Approximation for Navier-Stokes Equations: Theory and Algorithms,'', Springer, (1981).   Google Scholar

[8]

M. Grasseli, H. Wu and S. Zheng, Convergence to equilibrium for parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations,, SIAM J. Math. Anal., 40 (2009), 2007.  doi: 10.1137/080717833.  Google Scholar

[9]

M. Grasseli, H. Petzeltová and G. Schimperna, Asymptotic behaviour of a nonisothermal viscous Cahn-Hilliard equation with inertial term,, J. Diff. Equ., 239 (2007), 38.  doi: 10.1016/j.jde.2007.05.003.  Google Scholar

[10]

F. Guillén-González and J. V. Gutiérrez-Santacreu, A linearmixed finite element scheme for a nematic Eriksen-Leslie liquidcrystal model,, Submitted., ().   Google Scholar

[11]

F. Leslie, Some constitutive equations for liquid crystals,, Arch. Ration. Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[12]

F. H. Lin and C. Liu, Nonparabolic dissipative systemsmodeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[13]

C. Liu and N. J. Walkington, Approximation of liquid crystal flows,, SIAM J. Numer. Anal., 37 (2000), 725.  doi: 10.1137/S0036142998344512.  Google Scholar

[14]

C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows,, M2AN Math. Model. Numer., 36 (2002), 205.  doi: 10.1051/m2an:2002010.  Google Scholar

[15]

C. Liu, H. Wu and X. Xu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties,, preprint, ().   Google Scholar

[16]

S. Lojasiewicz, Une propriotopologique des sous-ensembles analytiques rls,, In, (1963), 87.   Google Scholar

[17]

S. Lojasiewicz, Ensemble semi-analytiques,, I. H. E. S. Notes, (1965).   Google Scholar

[18]

B. Merlet and M. Pierre, Convergence to equilibrium for the Backward Euler Scheme and Applications,, Comm. Pure Appl. Anal., 9 (2010), 685.   Google Scholar

[19]

L. Simon, Asymptotics for a class of non-linear evolution equations with applications to geometric problems,, Ann. Of Math., 118 (1983), 525.  doi: 10.2307/2006981.  Google Scholar

[20]

H. Wu, Long time Behaviour for Nonlinear Hydrodynamic System modeling the Nematic Liquid Cristal Flows,, Discrete and Contin. Dyn. Syst., 26 (2010), 379.  doi: 10.3934/dcds.2010.26.379.  Google Scholar

[21]

H. Wu, M. Grasseli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase field system with dynamical boundary condition,, J. Maht. Anal. Appl., 329 (2007), 948.  doi: 10.1016/j.jmaa.2006.07.011.  Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,'', Academic Press, (1975).   Google Scholar

[2]

S. Bartels and A. Prohl, Constraint preserving implicit finite element discretization of harmonic map heat flow into spheres,, Math. Comp., 76 (2007), 1847.  doi: 10.1090/S0025-5718-07-02026-1.  Google Scholar

[3]

R. Becker, X. Feng and A. Prohl, Finite element approximations of the Ericken-Leslie model for nematic liquid crystal flow,, SIAM J. Numer. Anal., 46 (2008), 1704.  doi: 10.1137/07068254X.  Google Scholar

[4]

B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model,, Nonlinear Analysis, 71 (2009), 539.  doi: 10.1016/j.na.2008.10.092.  Google Scholar

[5]

B. Climent-Ezquerra, F. Guillén-González and M. A. Rodríguez-Bellido, Stability for nematic liquid crystal with stretching terms, , International Journal of Bifurcation and Chaos, 20 (2010), 2937.  doi: 10.1142/S0218127410027477.  Google Scholar

[6]

J. Ericksen, Continuum theory of nematic liquid crystals,, Res. Mechanica., 21 (1967), 381.   Google Scholar

[7]

V. Girault and R. A. Raviart, "Finite Element Approximation for Navier-Stokes Equations: Theory and Algorithms,'', Springer, (1981).   Google Scholar

[8]

M. Grasseli, H. Wu and S. Zheng, Convergence to equilibrium for parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations,, SIAM J. Math. Anal., 40 (2009), 2007.  doi: 10.1137/080717833.  Google Scholar

[9]

M. Grasseli, H. Petzeltová and G. Schimperna, Asymptotic behaviour of a nonisothermal viscous Cahn-Hilliard equation with inertial term,, J. Diff. Equ., 239 (2007), 38.  doi: 10.1016/j.jde.2007.05.003.  Google Scholar

[10]

F. Guillén-González and J. V. Gutiérrez-Santacreu, A linearmixed finite element scheme for a nematic Eriksen-Leslie liquidcrystal model,, Submitted., ().   Google Scholar

[11]

F. Leslie, Some constitutive equations for liquid crystals,, Arch. Ration. Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[12]

F. H. Lin and C. Liu, Nonparabolic dissipative systemsmodeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[13]

C. Liu and N. J. Walkington, Approximation of liquid crystal flows,, SIAM J. Numer. Anal., 37 (2000), 725.  doi: 10.1137/S0036142998344512.  Google Scholar

[14]

C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows,, M2AN Math. Model. Numer., 36 (2002), 205.  doi: 10.1051/m2an:2002010.  Google Scholar

[15]

C. Liu, H. Wu and X. Xu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties,, preprint, ().   Google Scholar

[16]

S. Lojasiewicz, Une propriotopologique des sous-ensembles analytiques rls,, In, (1963), 87.   Google Scholar

[17]

S. Lojasiewicz, Ensemble semi-analytiques,, I. H. E. S. Notes, (1965).   Google Scholar

[18]

B. Merlet and M. Pierre, Convergence to equilibrium for the Backward Euler Scheme and Applications,, Comm. Pure Appl. Anal., 9 (2010), 685.   Google Scholar

[19]

L. Simon, Asymptotics for a class of non-linear evolution equations with applications to geometric problems,, Ann. Of Math., 118 (1983), 525.  doi: 10.2307/2006981.  Google Scholar

[20]

H. Wu, Long time Behaviour for Nonlinear Hydrodynamic System modeling the Nematic Liquid Cristal Flows,, Discrete and Contin. Dyn. Syst., 26 (2010), 379.  doi: 10.3934/dcds.2010.26.379.  Google Scholar

[21]

H. Wu, M. Grasseli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase field system with dynamical boundary condition,, J. Maht. Anal. Appl., 329 (2007), 948.  doi: 10.1016/j.jmaa.2006.07.011.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[11]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[14]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[17]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[18]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[19]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[20]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

[Back to Top]