-
Previous Article
Some results on perturbations of Lyapunov exponents
- DCDS Home
- This Issue
-
Next Article
Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$
Decay of solutions for a system of nonlinear Schrödinger equations in 2D
1. | Department of Mathematics, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan |
References:
[1] |
T. Cazenave, "Semilinear Schödinger Equations," Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp. |
[2] |
S. Cohn, Global existence for the nonresonant Schrödinger equation in two space dimensions, Canad. Appl. Math. Quart., 2 (1994), 247-282. |
[3] |
M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations, 17 (2004), 297-330. |
[4] |
M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011. |
[5] |
V. Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203 (1990), 683-698.
doi: 10.1007/BF02570764. |
[6] |
J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n\geq 2$, Commun. Math. Phys., 151 (1993), 619-645.
doi: 10.1007/BF02097031. |
[7] |
N. Hayashi, Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J., 60 (1990), 717-727.
doi: 10.1215/S0012-7094-90-06029-6. |
[8] |
N. Hayashi, Global and almost global solutions to quadratic nonlinear Schrödinger equations with small initial data, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 109-129. |
[9] |
N. Hayashi, C. Li and P. I. Naumkin, On a system of nonlinear Schrödinger equations in 2d, Differential Integral Equations, 24 (2011), 417-434. |
[10] |
N. Hayashi, C. Li and P. I. Naumkin, Modified wave operator for a system of nonlinear Schrödinger equations in 2d, Comm. Partial Differential Equations, 37 (2012), 947-968. |
[11] |
N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differential Equations and Applications - DEA, 3 (2011), 415-426. |
[12] |
N. Hayashi and P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math., 120 (1998), 369-389.
doi: 10.1353/ajm.1998.0011. |
[13] |
N. Hayashi and P. I. Naumkin, On the quadratic nonlinear Schrödinger equation in three space dimensions, Internat. Math. Res. Notices, 3 (2000), 115-132. |
[14] |
N. Hayashi and P. I. Naumkin, Global existence of small solutions to the quadratic nonlinear Schrödinger equations in two space dimensions, SIAM J. Math. Anal., 32 (2001), 1390-1403.
doi: 10.1137/S0036141000372532. |
[15] |
N. Hayashi and P. I. Naumkin, Asymptotics in time of solutions to nonlinear Schrödinger equations in two space dimensions, Funkcial. Ekvac., 49 (2006), 415-425.
doi: 10.1619/fesi.49.415. |
[16] |
N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa, Modified wave operators for nonlinear Schrödinger equations in one and two dimensions, Electron. J. Differential Equations, (2004), 62, 16pp. |
[17] |
N. Hayashi and T. Ozawa, Scattering theory in the weighted $\mathbfL^2$( Rn) spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 48 (1988), 17-37. |
[18] |
Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance , J. Differential Equations, 251 (2011), 2549-2567.
doi: 10.1016/j.jde.2011.04.001. |
[19] |
S. Katayama, T. Ozawa and H. Sunagawa, A note on the null condition for quadratic nonlinear Klein-Gordon systems in two space dimensions, to appear in Comm. Pure Appl. Math., arXiv:1105.1952. |
[20] |
S. Klainerman, Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal., 78 (1982), 73-98.
doi: 10.1007/BF00253225. |
[21] |
K. Moriyama, S. Tonegawa and Y. Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math., 5 (2003), 983-996. |
[22] |
T. Ozawa, Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac., 38 (1995), 217-232. |
[23] |
T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.
doi: 10.1007/s00526-005-0349-2. |
[24] |
J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425.
doi: 10.1016/0022-0396(82)90102-4. |
[25] |
A. Shimomura, Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335. |
[26] |
A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423.
doi: 10.1080/03605300600910316. |
[27] |
A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions Differential integral Equations, 17 (2004),127-150. |
[28] |
J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.
doi: 10.1002/cpa.3160380516. |
[29] |
W. Strauss, Nonlinear scattering at low energy, J. Funct. Anal., 43 (1981), 281-293.
doi: 10.1016/0022-1236(81)90019-7. |
[30] |
H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear klein-Gordon equations with different mass terms in one space dimension, J. Differential Equations, 192 (2003), 308-325.
doi: 10.1016/S0022-0396(03)00125-6. |
[31] |
Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125. |
show all references
References:
[1] |
T. Cazenave, "Semilinear Schödinger Equations," Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp. |
[2] |
S. Cohn, Global existence for the nonresonant Schrödinger equation in two space dimensions, Canad. Appl. Math. Quart., 2 (1994), 247-282. |
[3] |
M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations, 17 (2004), 297-330. |
[4] |
M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011. |
[5] |
V. Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203 (1990), 683-698.
doi: 10.1007/BF02570764. |
[6] |
J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n\geq 2$, Commun. Math. Phys., 151 (1993), 619-645.
doi: 10.1007/BF02097031. |
[7] |
N. Hayashi, Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J., 60 (1990), 717-727.
doi: 10.1215/S0012-7094-90-06029-6. |
[8] |
N. Hayashi, Global and almost global solutions to quadratic nonlinear Schrödinger equations with small initial data, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 109-129. |
[9] |
N. Hayashi, C. Li and P. I. Naumkin, On a system of nonlinear Schrödinger equations in 2d, Differential Integral Equations, 24 (2011), 417-434. |
[10] |
N. Hayashi, C. Li and P. I. Naumkin, Modified wave operator for a system of nonlinear Schrödinger equations in 2d, Comm. Partial Differential Equations, 37 (2012), 947-968. |
[11] |
N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differential Equations and Applications - DEA, 3 (2011), 415-426. |
[12] |
N. Hayashi and P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math., 120 (1998), 369-389.
doi: 10.1353/ajm.1998.0011. |
[13] |
N. Hayashi and P. I. Naumkin, On the quadratic nonlinear Schrödinger equation in three space dimensions, Internat. Math. Res. Notices, 3 (2000), 115-132. |
[14] |
N. Hayashi and P. I. Naumkin, Global existence of small solutions to the quadratic nonlinear Schrödinger equations in two space dimensions, SIAM J. Math. Anal., 32 (2001), 1390-1403.
doi: 10.1137/S0036141000372532. |
[15] |
N. Hayashi and P. I. Naumkin, Asymptotics in time of solutions to nonlinear Schrödinger equations in two space dimensions, Funkcial. Ekvac., 49 (2006), 415-425.
doi: 10.1619/fesi.49.415. |
[16] |
N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa, Modified wave operators for nonlinear Schrödinger equations in one and two dimensions, Electron. J. Differential Equations, (2004), 62, 16pp. |
[17] |
N. Hayashi and T. Ozawa, Scattering theory in the weighted $\mathbfL^2$( Rn) spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 48 (1988), 17-37. |
[18] |
Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance , J. Differential Equations, 251 (2011), 2549-2567.
doi: 10.1016/j.jde.2011.04.001. |
[19] |
S. Katayama, T. Ozawa and H. Sunagawa, A note on the null condition for quadratic nonlinear Klein-Gordon systems in two space dimensions, to appear in Comm. Pure Appl. Math., arXiv:1105.1952. |
[20] |
S. Klainerman, Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal., 78 (1982), 73-98.
doi: 10.1007/BF00253225. |
[21] |
K. Moriyama, S. Tonegawa and Y. Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math., 5 (2003), 983-996. |
[22] |
T. Ozawa, Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac., 38 (1995), 217-232. |
[23] |
T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.
doi: 10.1007/s00526-005-0349-2. |
[24] |
J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425.
doi: 10.1016/0022-0396(82)90102-4. |
[25] |
A. Shimomura, Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335. |
[26] |
A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423.
doi: 10.1080/03605300600910316. |
[27] |
A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions Differential integral Equations, 17 (2004),127-150. |
[28] |
J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.
doi: 10.1002/cpa.3160380516. |
[29] |
W. Strauss, Nonlinear scattering at low energy, J. Funct. Anal., 43 (1981), 281-293.
doi: 10.1016/0022-1236(81)90019-7. |
[30] |
H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear klein-Gordon equations with different mass terms in one space dimension, J. Differential Equations, 192 (2003), 308-325.
doi: 10.1016/S0022-0396(03)00125-6. |
[31] |
Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125. |
[1] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[2] |
Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 |
[3] |
Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103 |
[4] |
Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210 |
[5] |
Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69 |
[6] |
Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723 |
[7] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1511-1547. doi: 10.3934/dcdsb.2021100 |
[8] |
Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565 |
[9] |
Akihiro Shimomura. Modified wave operators for the coupled wave-Schrödinger equations in three space dimensions. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1571-1586. doi: 10.3934/dcds.2003.9.1571 |
[10] |
Jaeyoung Byeon, Ohsang Kwon, Yoshihito Oshita. Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2015, 14 (3) : 825-842. doi: 10.3934/cpaa.2015.14.825 |
[11] |
Thierry Colin, Pierre Fabrie. Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 671-690. doi: 10.3934/dcds.1998.4.671 |
[12] |
M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473 |
[13] |
Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure and Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533 |
[14] |
Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233 |
[15] |
Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109 |
[16] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2877-2891. doi: 10.3934/dcdss.2020456 |
[17] |
Karen Yagdjian, Anahit Galstian. Fundamental solutions for wave equation in Robertson-Walker model of universe and $L^p-L^q$ -decay estimates. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 483-502. doi: 10.3934/dcdss.2009.2.483 |
[18] |
Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061 |
[19] |
Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909 |
[20] |
Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]