Citation: |
[1] |
F. Abdenur and C. Bonatti, S. Crovisier, L. J. Díaz and L. Wen, Periodic points and homoclinic classes, Ergod. Th. Dynam. Sys., 27 (2007), 1-22.doi: 10.1017/S0143385706000538. |
[2] |
A. Arbieto and T. Catalan, Hyperbolicity in the volume preserving scenario, preprint, arXiv:1004.1664. |
[3] |
M. C. Arnaud, Cr$\acutee$ation de connexions en topologie $C^1$, (French) [Creating connections in the $C^1$-topology], Ergod. Th. Dynam. Sys., 21 (2001), 339-381. |
[4] |
L. Arnold, "Random Dynamical Systems," Springer-Verlag, New York, 1998. |
[5] |
L. Arnold and N. D. Cong, On the simplicity of the Lyapunov spectrum ofproducts of random matrices, Ergod. Th. Dynam. Sys., 17 (1997), 1005-1025.doi: 10.1017/S0143385797086355. |
[6] |
L. Arnold and N. D. Cong, Linear cocycles with simple Lyapunov spectrum are dense in $L^\infty$, Ergod. Th. Dynam. Sys., 19 (1999), 1389-1404.doi: 10.1017/S014338579915199X. |
[7] |
A. Ávila, On the regularization of conservative maps, Acta Mathematica, 205 (2010), 5-18. |
[8] |
A. Ávila, J. Bochi and A. Wilkinson, Nonuniform center bunching andthe genericity of ergodicity among $C^1$ partially hyperbolicsymplectomotphisms, Annales Scientifiques de l'Ecole Normale Superieure, 42 (2009), 931-979. |
[9] |
A. Baraviera and C. Bonatti, Removing zero Lyapunov exponents, Ergod. Th. Dynam. Sys., 22 (2003), 1655-1670.doi: 10.1017/S0143385702001773. |
[10] |
L. Barreira and Y. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory," A. M. S., 2002. |
[11] |
J. Bochi, Genericity of zero Lyapunov exponents, Ergod. Th. Dynam. Sys., 22 (2002), 1667-1696.doi: 10.1017/S0143385702001165. |
[12] |
J. Bochi, B. R. Fayad and E. Pujals, A remark on conservative diffeomorphisms, C.R.Math. Acad. Sci. Paris, 342 (2006), 763-766 (English, with English and French summaries). |
[13] |
J. Bochi and M. Viana, The Lyapunov exponents of genericvolume-preserving and symplectic maps, Ann. of Math., 161 (2005), 1423-1458.doi: 10.4007/annals.2005.161.1423. |
[14] |
C. Bonatti and S. Crovisier, Récurrence et généricité, (French) [Recurrence and genericity], Invent. Math., 158 (2004), 33-104. |
[15] |
C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math., 143 (1996), 357-396.doi: 10.2307/2118647. |
[16] |
C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and $C^1$-generic dynamics, Journal of the Inst. of Math. Jussieu, 7 (2008), 469-525. |
[17] |
C. Bonatti, L. J. Díaz and E.R. Pujals, A $C^1-$generic dichotomy for diffeomorphisms: Weak forms ofhyperbolicity or infinitely many sinks or sources, Ann. of Math., 158 (2003), 355-418.doi: 10.4007/annals.2003.158.355. |
[18] |
C. Bonatti, L. J. Díaz, E.R. Pujals and J. Rocha, Robustly transitive sets and heterodimensional cycles, Astérisque, 286 (2003), 187-222. |
[19] |
C. Bonatti, L. J. Díaz and M. Viana, Discontinuity of the Hausdorff dimension of hyperbolic sets, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 713-718. |
[20] |
C. Bonatti, L. J. Díaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity:A Global Geometric and Probabilistic Perspective," Encyclopaedia of MathematicalSciences, 102, Mathematical Physics, III, Springer-Verlag, Berlin, 2005. |
[21] |
C. Bonatti and M. Viana, Lyapunov exponents with multiplicity 1 fordeterministic products of matrices, Ergod. Th. Dynam. Sys., 24 (2004), 1295-1330.doi: 10.1017/S0143385703000695. |
[22] |
K. Burns, D. Dolgopyat and Y. Pesin, Partial hyperbolicity, Lyapunovexponents and stable ergodicity, J. Stat. Phys., 109 (2002), 927-942.doi: 10.1023/A:1019779128351. |
[23] |
K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic sysytems, Ann. of Math., 171 (2010), 451-489.doi: 10.4007/annals.2010.171.451. |
[24] |
L. J. Díaz, Robust nonhyperbolic dynamics and heterodimensional cycles, Ergod. Th. Dynam. Sys., 15 (1995), 291-315. |
[25] |
D. Dolgopyat and A. Wilkinson, Stable accessibility is $C^1$ dense, Geometric Methods in Dynamics, II, Astérisque, 287 (2003), 33-60. |
[26] |
S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega-$stable conjecture for flows, Ann. of Math., 145 (1997), 81-137. |
[27] |
F. R. Hertz, M. A. R. Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and non-uniform hyperbolicity, Duke Math. J., 160 (2011), 599-629.doi: 10.1215/00127094-1444314. |
[28] |
F. R. Hertz, M. A. R. Hertz, A. Tahzibi and R. Ures, Creation of Blenders in the conservative setting, Nonlinearity (Bristol), 23 (2010), 211-223. |
[29] |
O. Knill, Positive Lyapunov indices determine absolutely continuousspectra of stationary random one-dimensional Schrodinger operators, Stochastic analysis, North Holland, (1984), 225-248. |
[30] |
C. Liang and G. Liu, Dominated splitting versus Small angles, Acta Math. Sinica, 24 (2008), 1163-1174.doi: 10.1007/s10114-007-6445-9. |
[31] |
C. Liang and G. Liu, Conditions for dominated splitting, Acta Math. Sinica, 25 (2009), 1389-1398.doi: 10.1007/s10114-009-6568-2. |
[32] |
C. Liang, G. Liu and W. Sun, Equivalent conditions fordominated splitting in volume-preserving diffeomorphisms, Acta Math. Sinica, 23 (2007), 1563-1576.doi: 10.1007/s10114-005-0889-6. |
[33] |
R. Mañé, An ergodic closing lemma, Ann. of Math., 116 (1982), 503-540.doi: 10.2307/2007021. |
[34] |
M. Pollicott, "Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds," Cambridge Univ. Press, 1993. |
[35] |
E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. 151 (2000), 961-1023. |
[36] |
M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math., 139 (2000), 495-508.doi: 10.1007/s002229900035. |
[37] |
P. Walters, "An Introduction to Ergodic Theory," Springer, 1982. |
[38] |
Z. Wang and W. Sun, Lyapunov exponents of hyperbolic measures andhyperbolic periodic orbits, Trans. Amer. Math., 362 (2010), 4267-4282.doi: 10.1090/S0002-9947-10-04947-0. |
[39] |
L. Wen, Homoclinic tangengcies and dominated splittings, Nonlinearity, 15 (2002), 1445-1469.doi: 10.1088/0951-7715/15/5/306. |
[40] |
L. Wen, A uniform $C^1$ connecting lemma, Discrete and Continuous Dynamical Systems, 8 (2002), 257-265. |
[41] |
L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensionalcycles, Bull. Braz. Math. Soc., \textbf {35} (2004), 419-452.doi: 10.1007/s00574-004-0023-x. |
[42] |
L. Wen and Z. Xia, $C^1$ connecting lemmas, Trans. Amer. Math., 352 (2000), 5213-5230.doi: 10.1090/S0002-9947-00-02553-8. |
[43] |
J. Yang, "$C^1$ Dynamics Far From Tangencies," Ph.D thesis, IMPA, 2008. Available from: http://www.preprint.impa.br. |
[44] |
J. Yang, Ergodic measures far away from tangencies, preprint, 2009. Available from: http://www.preprint.impa.br. |