Citation: |
[1] |
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha} $, J. Fac. Sci. Univ. Tokyo, Sec. 1., 13 (1966), 109-124. |
[2] |
Y. Han and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. Math., 124 (2000), 415-433.doi: 10.1016/S0007-4497(00)00141-X. |
[3] |
K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., 49 (1973), 503-505.doi: 10.3792/pja/1195519254. |
[4] |
N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical nonlinearities, Differential Integral Equations, 17 (2004), 637-652. |
[5] |
N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation in the subcritical case, J. Differential Equations, 207 (2004), 161-194.doi: 10.1016/j.jde.2004.06.018. |
[6] |
N. Hayashi, E. I. Kaikina and P. I. Naumkin, On the critical nonlinear damped wave equation with large initial data, J. Math. Anal. Appl., 334 (2007), 1400-1425.doi: 10.1016/j.jmaa.2007.01.021. |
[7] |
T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations, 203 (2004), 82-118.doi: 10.1016/j.jde.2004.03.034. |
[8] |
R. Ikehata, Diffusion phenomenon for linear dissipative wave equations in an exterior domain, J. Differential Equations, 186 (2002), 633-651.doi: 10.1016/S0022-0396(02)00008-6. |
[9] |
R. Ikehata and K. Nishihara, Diffusion phenomenon for second order linear evolution equations, Studia Math., 158 (2003), 153-161.doi: 10.4064/sm158-2-4. |
[10] |
R. Ikehata, K. Nishihara and H. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption, J. Differential Equations, 226 (2006), 1-29.doi: 10.1016/j.jde.2006.01.002. |
[11] |
R. Ikehata, G. Todorova and B. Yordanov, Critical exponent for semilinear wave equations with space-dependent potential, Funk. Ekvac., 52 (2009), 411-435.doi: 10.1619/fesi.52.411. |
[12] |
R. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math., 143 (2000), 175-197. |
[13] |
S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan, 47 (1995), 617-653.doi: 10.2969/jmsj/04740617. |
[14] |
T.-T. Li and Yi. Zhou, Breakdown of solutions to $ \square u +u_t = u^{1+\alpha} $, Discrete Cont. Dynam. Syst., 1 (1995), 503-520.doi: 10.3934/dcds.1995.1.503. |
[15] |
J. Lin, K. Nishihara and J. Zhai, $L^2$ estimates of solutions for the damped wave equations with space-time dependent damping term, J. Differential Equations, 248 (2010), 403-422.doi: 10.1016/j.jde.2009.09.022. |
[16] |
J. Lin, K. Nishihara and J. Zhai, Decay property of solutions for damped wave equations with space-time dependent damping term, J. Math. Anal. Appl., 374 (2011), 602-614.doi: 10.1016/j.jmaa.2010.09.032. |
[17] |
J. Lin and J. Zhai, Blow-up of the solution for semilinear damped wave equation with time-dependent damping, to appear in Commun. Contemp. Math.. |
[18] |
T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626.doi: 10.2969/jmsj/1191418647. |
[19] |
K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., 244 (2003), 631-649. |
[20] |
K. Nishihara, Global asymptotics for the damped wave equation with absorption in higher dimensional space, J. Math. Soc. Japan 58 (2006), 805-836.doi: 10.2969/jmsj/1156342039. |
[21] |
K. Nishihara, Decay properties for the damped wave equation with space dependent potential and absorbed semilinear term, Commun. Partial Differential Equations, 35 (2010), 1402-1418.doi: 10.1080/03605302.2010.490285. |
[22] |
K. Nishihara, Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping, Tokyo J. Math., 34 (2011), 327-343.doi: 10.3836/tjm/1327931389. |
[23] |
K. Nishihara and J. Zhai, Asymptotic behaviors of solutions for time dependent damped wave equations, J. Math. Anal. Appl., 360 (2009), 412-421.doi: 10.1016/j.jmaa.2009.06.065. |
[24] |
K. Nishihara and H. Zhao, Decay properties of solutions to the Cauchy problem for the damped wave equation with absorption, J. Math. Anal. Appl., 313 (2006), 598-610.doi: 10.1016/j.jmaa.2005.08.059. |
[25] |
P. Radu, G. Todorova and B. Yordanov, Higher order energy decay rates for damped wave equations with variable coefficients, Disc. Cont. Dyn. Sys. S, 2 (2009), 609-629.doi: 10.3934/dcdss.2009.2.609. |
[26] |
M. Reissig, $L_p$-$L_q$ decay estimates for wave equations with time-dependent coefficients, J. Nonlinear Math. Phys., 11 (2004), 534-548.doi: 10.2991/jnmp.2004.11.4.9. |
[27] |
G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.doi: 10.1006/jdeq.2000.3933. |
[28] |
G. Todorova and B. Yordanov, Nonlinear dissipative wave equations with potential, AMS Contemporary Mathematics, 426 (2007), 317-337.doi: 10.1090/conm/426/08196. |
[29] |
J. Wirth, Wave equations with time-dependent dissipation. I. Non-effective dissipation, J. Differential Equations, 222 (2006), 487-514.doi: 10.1016/j.jde.2005.07.019. |
[30] |
J. Wirth, Wave equations with time-dependent dissipation. II. Effective dissipation, J. Differential Equations, 232 (2007), 74-103.doi: 10.1016/j.jde.2006.06.004. |
[31] |
T. Yamazaki, Asymptotic behavior for abstract wave equations with decaying dissipation, Adv. Differential Equations, 11 (2006), 419-456. |
[32] |
T. Yamazaki, Diffusion phenomenon for abstract wave equations with decaying dissipation, Adv. Stud. Pure Math., 47 (2007), 363-381. |
[33] |
Qi. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris, 333 (2001), 109-114.doi: 10.1016/S0764-4442(01)01999-1. |
[34] |
Y. Zhou, A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in $\mathbbR^N$, Appl. Math. Lett., 18 (2005), 281-286.doi: 10.1016/j.aml.2003.07.018. |