-
Previous Article
Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping
- DCDS Home
- This Issue
-
Next Article
Critical exponent for the semilinear wave equation with time-dependent damping
Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps
1. | School of Mathematics, Georgia Institute of Technology, 686 Cherry St, Atlanta, GA 30332-0160, United States |
2. | Department of Mathematics, Rutgers University, Hill Center for the Mathematical Sciences, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, United States |
References:
[1] |
Trudy Moskov. Mat. Obšč., 25 (1971), 199-239; 26 (1972), 119-262. |
[2] |
Dover Publications Inc., New York, 1995. Translated from the French, Reprint of the 1973 edition. |
[3] |
Indiana Univ. Math. J., 52 (2003), 283-328.
doi: 10.1512/iumj.2003.52.2245. |
[4] |
Indiana Univ. Math. J., 52 (2003), 329-360.
doi: 10.1512/iumj.2003.52.2407. |
[5] |
J. Differential Equations, 218 (2005), 444-515.
doi: 10.1016/j.jde.2004.12.003. |
[6] |
J. Statist. Phys., 87 (1997), 211-249.
doi: 10.1007/BF02181486. |
[7] |
In "Smooth Ergodic Theory and Its Applications (Seattle, WA , 1999)," volume 69 of "Proc. Sympos. Pure Math.," 175-292, Amer. Math. Soc., Providence, RI, 2001. Google Scholar |
[8] |
Math. Phys. Electron. J., 9 (2003), Paper 3, 35 pp. (electronic). |
[9] |
Nonlinearity, 18 (2005), 855-895.
doi: 10.1088/0951-7715/18/2/020. |
[10] |
Math. Z., 236 (2001), 717-777.
doi: 10.1007/PL00004849. |
[11] |
Electron. Res. Announc. Math. Sci., 16 (2009), 9-22. |
[12] |
In "Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)," 133-163, Amer. Math. Soc., Providence, R.I., 1970. |
[13] |
L. D. Landau and E. M. Lifschitz, "Course of Theoretical Physics Vol II,", Classical Theory of Fields., ().
|
[14] |
SIAM J. Appl. Dyn. Syst., 9 (2010), 919-953. |
[15] |
J. D. Mireles James, Quadratic Volume-Preserving Maps: (Un)Stable Manifolds, Hyperbolic Dynamics. and Vortex Bubble Bifurcations,, (Submitted). www.math.rutgers.edu/ jmireles/papers.html, (). Google Scholar |
[16] |
Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 1824-1831.
doi: 10.1073/pnas.47.11.1824. |
[17] |
Trans. Amer. Math. Soc., 120 (1965), 286-294.
doi: 10.1090/S0002-9947-1965-0182927-5. |
[18] |
Ann. Scuola Norm. Sup. Pisa (3), 20 (1966), 265-315. |
[19] |
Mathematische Zeitschrift, 29 (1928), 129-160. |
[20] |
Exposition. Math., 4 (1986), 97-109. |
[21] |
In "Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I," volume 14 (1976), 33-37. |
[22] |
In "Nonlinear Dynamics (Internat. Conf., New York, 1979)," volume 357 of "Ann. New York Acad. Sci.," 90-107, New York Acad. Sci., New York, 1980. |
[23] |
SIAM J. Math. Anal., 43 (2011), 1557-1594.
doi: 10.1137/100812008. |
[24] |
Comm. Pure Appl. Math., 28 (1975), 91-140.
doi: 10.1002/cpa.3160280104. |
show all references
References:
[1] |
Trudy Moskov. Mat. Obšč., 25 (1971), 199-239; 26 (1972), 119-262. |
[2] |
Dover Publications Inc., New York, 1995. Translated from the French, Reprint of the 1973 edition. |
[3] |
Indiana Univ. Math. J., 52 (2003), 283-328.
doi: 10.1512/iumj.2003.52.2245. |
[4] |
Indiana Univ. Math. J., 52 (2003), 329-360.
doi: 10.1512/iumj.2003.52.2407. |
[5] |
J. Differential Equations, 218 (2005), 444-515.
doi: 10.1016/j.jde.2004.12.003. |
[6] |
J. Statist. Phys., 87 (1997), 211-249.
doi: 10.1007/BF02181486. |
[7] |
In "Smooth Ergodic Theory and Its Applications (Seattle, WA , 1999)," volume 69 of "Proc. Sympos. Pure Math.," 175-292, Amer. Math. Soc., Providence, RI, 2001. Google Scholar |
[8] |
Math. Phys. Electron. J., 9 (2003), Paper 3, 35 pp. (electronic). |
[9] |
Nonlinearity, 18 (2005), 855-895.
doi: 10.1088/0951-7715/18/2/020. |
[10] |
Math. Z., 236 (2001), 717-777.
doi: 10.1007/PL00004849. |
[11] |
Electron. Res. Announc. Math. Sci., 16 (2009), 9-22. |
[12] |
In "Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)," 133-163, Amer. Math. Soc., Providence, R.I., 1970. |
[13] |
L. D. Landau and E. M. Lifschitz, "Course of Theoretical Physics Vol II,", Classical Theory of Fields., ().
|
[14] |
SIAM J. Appl. Dyn. Syst., 9 (2010), 919-953. |
[15] |
J. D. Mireles James, Quadratic Volume-Preserving Maps: (Un)Stable Manifolds, Hyperbolic Dynamics. and Vortex Bubble Bifurcations,, (Submitted). www.math.rutgers.edu/ jmireles/papers.html, (). Google Scholar |
[16] |
Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 1824-1831.
doi: 10.1073/pnas.47.11.1824. |
[17] |
Trans. Amer. Math. Soc., 120 (1965), 286-294.
doi: 10.1090/S0002-9947-1965-0182927-5. |
[18] |
Ann. Scuola Norm. Sup. Pisa (3), 20 (1966), 265-315. |
[19] |
Mathematische Zeitschrift, 29 (1928), 129-160. |
[20] |
Exposition. Math., 4 (1986), 97-109. |
[21] |
In "Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I," volume 14 (1976), 33-37. |
[22] |
In "Nonlinear Dynamics (Internat. Conf., New York, 1979)," volume 357 of "Ann. New York Acad. Sci.," 90-107, New York Acad. Sci., New York, 1980. |
[23] |
SIAM J. Math. Anal., 43 (2011), 1557-1594.
doi: 10.1137/100812008. |
[24] |
Comm. Pure Appl. Math., 28 (1975), 91-140.
doi: 10.1002/cpa.3160280104. |
[1] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[2] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[3] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409 |
[4] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391 |
[5] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[6] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[7] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[8] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[9] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[10] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[11] |
Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025 |
[12] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[13] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[14] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[15] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[16] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[17] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[18] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[19] |
Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021008 |
[20] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]