Citation: |
[1] |
C. Abraham, G. Biau and B. Cadre, Chaotic properties of mappings on a probability space, J. Math. Anal. Appl., 266 (2002), 420-431.doi: 10.1006/jmaa.2001.7754. |
[2] |
C. Abraham, G. Biau and B. Cadre, On Lyapunov exponent and sensitivity, J. Math. Anal. Appl., 290 (2004), 395-404.doi: 10.1016/j.jmaa.2003.10.029. |
[3] |
R. B. Ash, "Real Analysis and Probability,'' Probability and Mathematical Statistics, No. 11, Academic Press, New York-London, 1972. |
[4] |
Y. Baba, I. Kubo and Y. Takahashi, Li-Yorke's scrambled sets have measure $0$, Nonlinear Anal., 26 (1996), 1611-1612.doi: 10.1016/0362-546X(95)00044-V. |
[5] |
A. Barrio Blaya and V. Jiménez López, Is trivial dynamics that trivial?, Amer. Math. Monthly, 113 (2006), 109-133.doi: 10.2307/27641863. |
[6] |
A. M. Blokh, Sensitive mappings of an interval, Uspekhi Mat. Nauk, 37 (1982), 189-190.doi: 10.1070/RM1982v037n02ABEH003915. |
[7] |
A. Blokh and M. Misiurewicz, Wild attractors of polymodal negative Schwarzian maps, Comm. Math. Phys., 199 (1998), 397-416.doi: 10.1007/s002200050506. |
[8] |
A. Boyarsky and P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension,'' Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. |
[9] |
H. Bruin, G. Keller and M. St. Pierre, Adding machines and wild attractors, Ergodic Theory Dynam. Systems, 17 (1997), 1267-1287.doi: 10.1017/S0143385797086392. |
[10] |
J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states, in "Smooth Ergodic Theory and its Applications" (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001), 749-783. |
[11] |
B. Cadre and P. Jacob, On pairwise sensitivity, J. Math. Anal. Appl., 309 (2005), 375-382.doi: 10.1016/j.jmaa.2005.01.061. |
[12] |
B. D. Craven, "Lebesgue Measure & Integral,'' Pitman, Boston, MA, 1982. |
[13] |
R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,'' The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. |
[14] |
E. I. Dinaburg, A correlation between topological entropy and metric entropy, (Russian) Dokl. Akad. Nauk SSSR, 190 (1970), 19-22. |
[15] |
E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.doi: 10.1088/0951-7715/6/6/014. |
[16] |
J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys., 70 (1979), 133-160.doi: 10.1007/BF01982351. |
[17] |
F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval, in "Lyapunov Exponents" (Oberwolfach, 1990), Lecture Notes in Math., 1486, Springer, Berlin, (1991), 227-231. |
[18] |
S. D. Johnson, Singular measures without restrictive intervals, Comm. Math. Phys., 110 (1987), 185-190.doi: 10.1007/BF01207362. |
[19] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.doi: 10.1007/BF02684777. |
[20] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'' With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. |
[21] |
G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems, 10 (1990), 717-744.doi: 10.1017/S0143385700005861. |
[22] |
A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces (Russian), Dokl. Akad. Nauk SSSR (N.S.), 119 (1958), 861-864. |
[23] |
F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems, 1 (1981), 77-93.doi: 10.1017/S0143385700001176. |
[24] |
E. N. Lorenz, The predictability of hydrodynamic flow, Trans. New York Acad. Sci., Ser. 2, 25 (1963), 409-432. |
[25] |
M. Lyubich, Ergodic theory for smooth one-dimensional dynamical systems, Stony Brook preprint, 1991/11, arXiv:math/9201286. |
[26] |
R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., 100 (1985), 495-524, Erratum in Comm. Math. Phys., 112 (1987), 721-724. |
[27] |
R. Mañé, "Ergodic Theory and Differentiable Dynamics,'' Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8, Springer-Verlag, Berlin, 1987. |
[28] |
W. de Melo and S. van Strien, "One-Dimensional Dynamics,'' Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25, Springer-Verlag, Berlin, 1993. |
[29] |
M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 167-169. |
[30] |
W. Parry, "Entropy and Generators in Ergodic Theory,'' W. A. Benjamin, Inc., New York-Amsterdam, 1969. |
[31] |
V. A. Rohlin, Exact endomorphisms of a Lebesgue space, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530. |
[32] |
D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., 9 (1978), 83-87. |
[33] |
S. Ruette, Chaos for continuous interval maps. A survey of relationship between the various sorts of chaos, preprint, Université Paris-Sud, 2003. Available from: http://www.math.u-psud.fr/~ruette/publications.html. |
[34] |
S. van Strien and E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc., 17 (2004), 749-782. Erratum in J. Amer. Math. Soc., 20 (2007), 267-268.doi: 10.1090/S0894-0347-04-00463-1. |
[35] |
P. Walters, "An Introduction to Ergodic Theory,'' Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[36] |
H. Whitney, On totally differentiable and smooth functions, Pacific J. Math., 1 (1951), 143-159. |