February  2012, 32(2): 433-466. doi: 10.3934/dcds.2012.32.433

On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps

1. 

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain, Spain

Received  September 2010 Revised  July 2011 Published  September 2011

Let $f:I=[0,1]\rightarrow I$ be a Borel measurable map and let $\mu$ be a probability measure on the Borel subsets of $I$. We consider three standard ways to cope with the idea of ``observable chaos'' for $f$ with respect to the measure $\mu$: $h_\mu(f)>0$ ---when $\mu$ is invariant---, $\mu(L^+(f))>0$ ---when $\mu$ is absolutely continuous with respect to the Lebesgue measure---, and $\mu(S^\mu(f))>0$. Here $h_\mu(f)$, $L^+(f)$ and $S^\mu(f)$ denote, respectively, the metric entropy of $f$, the set of points with positive Lyapunov exponent, and the set of sensitive points to initial conditions with respect to $\mu$.
    It is well known that if $h_\mu(f)>0$ or $\mu(L^+(f))>0$, then $\mu(S^\mu(f))>0$, and that (when $\mu$ is invariant and absolutely continuous) $h_\mu(f)>0$ and $\mu(L^+(f))>0$ are equivalent properties. However, the available proofs in the literature require substantially stronger hypotheses than those strictly necessary. In this paper we revisit these notions and show that the above-mentioned results remain true in, essentially, the most general (reasonable) settings. In particular, we improve some previous results from [2], [6], and [23].
Citation: Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433
References:
[1]

C. Abraham, G. Biau and B. Cadre, Chaotic properties of mappings on a probability space,, J. Math. Anal. Appl., 266 (2002), 420.  doi: 10.1006/jmaa.2001.7754.  Google Scholar

[2]

C. Abraham, G. Biau and B. Cadre, On Lyapunov exponent and sensitivity,, J. Math. Anal. Appl., 290 (2004), 395.  doi: 10.1016/j.jmaa.2003.10.029.  Google Scholar

[3]

R. B. Ash, "Real Analysis and Probability,'', Probability and Mathematical Statistics, (1972).   Google Scholar

[4]

Y. Baba, I. Kubo and Y. Takahashi, Li-Yorke's scrambled sets have measure $0$,, Nonlinear Anal., 26 (1996), 1611.  doi: 10.1016/0362-546X(95)00044-V.  Google Scholar

[5]

A. Barrio Blaya and V. Jiménez López, Is trivial dynamics that trivial?,, Amer. Math. Monthly, 113 (2006), 109.  doi: 10.2307/27641863.  Google Scholar

[6]

A. M. Blokh, Sensitive mappings of an interval,, Uspekhi Mat. Nauk, 37 (1982), 189.  doi: 10.1070/RM1982v037n02ABEH003915.  Google Scholar

[7]

A. Blokh and M. Misiurewicz, Wild attractors of polymodal negative Schwarzian maps,, Comm. Math. Phys., 199 (1998), 397.  doi: 10.1007/s002200050506.  Google Scholar

[8]

A. Boyarsky and P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension,'', Probability and its Applications, (1997).   Google Scholar

[9]

H. Bruin, G. Keller and M. St. Pierre, Adding machines and wild attractors,, Ergodic Theory Dynam. Systems, 17 (1997), 1267.  doi: 10.1017/S0143385797086392.  Google Scholar

[10]

J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states,, in, 69 (2001), 749.   Google Scholar

[11]

B. Cadre and P. Jacob, On pairwise sensitivity,, J. Math. Anal. Appl., 309 (2005), 375.  doi: 10.1016/j.jmaa.2005.01.061.  Google Scholar

[12]

B. D. Craven, "Lebesgue Measure & Integral,'', Pitman, (1982).   Google Scholar

[13]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,'', The Benjamin/Cummings Publishing Co., (1986).   Google Scholar

[14]

E. I. Dinaburg, A correlation between topological entropy and metric entropy,, (Russian) Dokl. Akad. Nauk SSSR, 190 (1970), 19.   Google Scholar

[15]

E. Glasner and B. Weiss, Sensitive dependence on initial conditions,, Nonlinearity, 6 (1993), 1067.  doi: 10.1088/0951-7715/6/6/014.  Google Scholar

[16]

J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps,, Comm. Math. Phys., 70 (1979), 133.  doi: 10.1007/BF01982351.  Google Scholar

[17]

F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval,, in, 1486 (1991), 227.   Google Scholar

[18]

S. D. Johnson, Singular measures without restrictive intervals,, Comm. Math. Phys., 110 (1987), 185.  doi: 10.1007/BF01207362.  Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.  doi: 10.1007/BF02684777.  Google Scholar

[20]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).   Google Scholar

[21]

G. Keller, Exponents, attractors and Hopf decompositions for interval maps,, Ergodic Theory Dynam. Systems, 10 (1990), 717.  doi: 10.1017/S0143385700005861.  Google Scholar

[22]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces (Russian),, Dokl. Akad. Nauk SSSR (N.S.), 119 (1958), 861.   Google Scholar

[23]

F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval,, Ergodic Theory Dynam. Systems, 1 (1981), 77.  doi: 10.1017/S0143385700001176.  Google Scholar

[24]

E. N. Lorenz, The predictability of hydrodynamic flow,, Trans. New York Acad. Sci., 25 (1963), 409.   Google Scholar

[25]

M. Lyubich, Ergodic theory for smooth one-dimensional dynamical systems,, Stony Brook preprint, (1991).   Google Scholar

[26]

R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics,, Comm. Math. Phys., 100 (1985), 495.   Google Scholar

[27]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8 (1987).   Google Scholar

[28]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25 (1993).   Google Scholar

[29]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 167.   Google Scholar

[30]

W. Parry, "Entropy and Generators in Ergodic Theory,'', W. A. Benjamin, (1969).   Google Scholar

[31]

V. A. Rohlin, Exact endomorphisms of a Lebesgue space,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499.   Google Scholar

[32]

D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Soc. Brasil. Mat., 9 (1978), 83.   Google Scholar

[33]

S. Ruette, Chaos for continuous interval maps. A survey of relationship between the various sorts of chaos,, preprint, (2003).   Google Scholar

[34]

S. van Strien and E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps,, J. Amer. Math. Soc., 17 (2004), 749.  doi: 10.1090/S0894-0347-04-00463-1.  Google Scholar

[35]

P. Walters, "An Introduction to Ergodic Theory,'', Graduate Texts in Mathematics, 79 (1982).   Google Scholar

[36]

H. Whitney, On totally differentiable and smooth functions,, Pacific J. Math., 1 (1951), 143.   Google Scholar

show all references

References:
[1]

C. Abraham, G. Biau and B. Cadre, Chaotic properties of mappings on a probability space,, J. Math. Anal. Appl., 266 (2002), 420.  doi: 10.1006/jmaa.2001.7754.  Google Scholar

[2]

C. Abraham, G. Biau and B. Cadre, On Lyapunov exponent and sensitivity,, J. Math. Anal. Appl., 290 (2004), 395.  doi: 10.1016/j.jmaa.2003.10.029.  Google Scholar

[3]

R. B. Ash, "Real Analysis and Probability,'', Probability and Mathematical Statistics, (1972).   Google Scholar

[4]

Y. Baba, I. Kubo and Y. Takahashi, Li-Yorke's scrambled sets have measure $0$,, Nonlinear Anal., 26 (1996), 1611.  doi: 10.1016/0362-546X(95)00044-V.  Google Scholar

[5]

A. Barrio Blaya and V. Jiménez López, Is trivial dynamics that trivial?,, Amer. Math. Monthly, 113 (2006), 109.  doi: 10.2307/27641863.  Google Scholar

[6]

A. M. Blokh, Sensitive mappings of an interval,, Uspekhi Mat. Nauk, 37 (1982), 189.  doi: 10.1070/RM1982v037n02ABEH003915.  Google Scholar

[7]

A. Blokh and M. Misiurewicz, Wild attractors of polymodal negative Schwarzian maps,, Comm. Math. Phys., 199 (1998), 397.  doi: 10.1007/s002200050506.  Google Scholar

[8]

A. Boyarsky and P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension,'', Probability and its Applications, (1997).   Google Scholar

[9]

H. Bruin, G. Keller and M. St. Pierre, Adding machines and wild attractors,, Ergodic Theory Dynam. Systems, 17 (1997), 1267.  doi: 10.1017/S0143385797086392.  Google Scholar

[10]

J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states,, in, 69 (2001), 749.   Google Scholar

[11]

B. Cadre and P. Jacob, On pairwise sensitivity,, J. Math. Anal. Appl., 309 (2005), 375.  doi: 10.1016/j.jmaa.2005.01.061.  Google Scholar

[12]

B. D. Craven, "Lebesgue Measure & Integral,'', Pitman, (1982).   Google Scholar

[13]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,'', The Benjamin/Cummings Publishing Co., (1986).   Google Scholar

[14]

E. I. Dinaburg, A correlation between topological entropy and metric entropy,, (Russian) Dokl. Akad. Nauk SSSR, 190 (1970), 19.   Google Scholar

[15]

E. Glasner and B. Weiss, Sensitive dependence on initial conditions,, Nonlinearity, 6 (1993), 1067.  doi: 10.1088/0951-7715/6/6/014.  Google Scholar

[16]

J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps,, Comm. Math. Phys., 70 (1979), 133.  doi: 10.1007/BF01982351.  Google Scholar

[17]

F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval,, in, 1486 (1991), 227.   Google Scholar

[18]

S. D. Johnson, Singular measures without restrictive intervals,, Comm. Math. Phys., 110 (1987), 185.  doi: 10.1007/BF01207362.  Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.  doi: 10.1007/BF02684777.  Google Scholar

[20]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).   Google Scholar

[21]

G. Keller, Exponents, attractors and Hopf decompositions for interval maps,, Ergodic Theory Dynam. Systems, 10 (1990), 717.  doi: 10.1017/S0143385700005861.  Google Scholar

[22]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces (Russian),, Dokl. Akad. Nauk SSSR (N.S.), 119 (1958), 861.   Google Scholar

[23]

F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval,, Ergodic Theory Dynam. Systems, 1 (1981), 77.  doi: 10.1017/S0143385700001176.  Google Scholar

[24]

E. N. Lorenz, The predictability of hydrodynamic flow,, Trans. New York Acad. Sci., 25 (1963), 409.   Google Scholar

[25]

M. Lyubich, Ergodic theory for smooth one-dimensional dynamical systems,, Stony Brook preprint, (1991).   Google Scholar

[26]

R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics,, Comm. Math. Phys., 100 (1985), 495.   Google Scholar

[27]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8 (1987).   Google Scholar

[28]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25 (1993).   Google Scholar

[29]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 167.   Google Scholar

[30]

W. Parry, "Entropy and Generators in Ergodic Theory,'', W. A. Benjamin, (1969).   Google Scholar

[31]

V. A. Rohlin, Exact endomorphisms of a Lebesgue space,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499.   Google Scholar

[32]

D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Soc. Brasil. Mat., 9 (1978), 83.   Google Scholar

[33]

S. Ruette, Chaos for continuous interval maps. A survey of relationship between the various sorts of chaos,, preprint, (2003).   Google Scholar

[34]

S. van Strien and E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps,, J. Amer. Math. Soc., 17 (2004), 749.  doi: 10.1090/S0894-0347-04-00463-1.  Google Scholar

[35]

P. Walters, "An Introduction to Ergodic Theory,'', Graduate Texts in Mathematics, 79 (1982).   Google Scholar

[36]

H. Whitney, On totally differentiable and smooth functions,, Pacific J. Math., 1 (1951), 143.   Google Scholar

[1]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[7]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[11]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]