\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Entropy formulas for dynamical systems with mistakes

Abstract Related Papers Cited by
  • We study the recurrence to mistake dynamical balls, that is, dynamical balls that admit some errors and whose proportion of errors decrease tends to zero with the length of the dynamical ball. We prove, under mild assumptions, that the measure-theoretic entropy coincides with the exponential growth rate of return times to mistake dynamical balls and that minimal return times to mistake dynamical balls grow linearly with respect to its length. Moreover we obtain averaged recurrence formula for subshifts of finite type and suspension semiflows. Applications include $\beta$-transformations, Axiom A flows and suspension semiflows of maps with a mild specification property. In particular we extend some results from [6, 10, 19] for mistake dynamical balls.
    Mathematics Subject Classification: Primary: 37B20; Secondary: 37A35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Afraimovich, J.-R. Chazottes and B. Saussol, Pointwise dimensions for Poincaré recurrences associated with maps and special flows, Discrete Contin. Dyn. Syst., 9 (2003), 263-280.

    [2]

    L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows, Comm. Math. Phys., 214(2) (2000), 339-371.doi: 10.1007/s002200000268.

    [3]

    A. M. Blokh, Decomposition of dynamical systems on an interval, Uspekhi Mat. Nauk, 38(5(233)) (1983), 179-180.

    [4]

    R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X.

    [5]

    J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754.doi: 10.1090/S0002-9947-97-01873-4.

    [6]

    J.-R. Chazottes, Poincaré recurrences and entropy of suspended flows, Comptes Rendus Math., 332 (2001), 739-744.

    [7]

    W. Cheng, Y. Zhao and Y. Cao, Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Cont. Dyn. Syst., 32(2) (2012), 487-497.doi: 10.3934/dcds.2012.32.487.

    [8]

    T. Downarowicz and B. Weiss, Entropy theorems along times when $x$ visits a set, Illinois J. Math., 48 (2004), 59-69.

    [9]

    A. Katok, Lyapunov exponents, entropy and periodic points of diffeomorphisms, Publ. Math. IHES, 51 (1980), 137-173.

    [10]

    V. Maume-Deschamps, B. Schmitt, M. Urbański and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.doi: 10.4064/fm178-2-3.

    [11]

    A. Mesón and F. Vericat, Poincaré recurrence and topologicalpressure for homeomorphisms with specification, Far. East J.Dyn. Sys., 7 (2005), 1-14.

    [12]

    K. Oliveira and X. Tian.Nonuniform hyperbolicity and nonuniform specification, Preprint arxiv:1102.1652.

    [13]

    D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory, 39(1) (1993), 78-83.doi: 10.1109/18.179344.

    [14]

    C.-E. Pfister and W.G. Sullivan, On the topological entropy of saturated sets, Ergod. Th. Dynam. Syst., 27 (2007), 929-956.doi: 10.1017/S0143385706000824.

    [15]

    A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8 (1957), 477-493.

    [16]

    J. Rousseau, Recurrence rates for observations of flows, Ergod. Th. Dynam. Syst., Available on CJO 2011.

    [17]

    B. Saussol, S. Troubetzkoy and S. Vaienti, Recurrence and Lyapunov exponents, Mosc. Math. J., 3 (2003), 189-203,

    [18]

    D. ThompsonIrregular sets, the $\beta$-transformation and thealmost specification property, Preprint arxiv:0905.0739.

    [19]

    P. Varandas, Entropy and Poincaré recurrence from a geometrical viewpoint, Nonlinearity, 22 (2009), 2365-2375.doi: 10.1088/0951-7715/22/10/003.

    [20]

    P. Varandas, Non-uniform specification and large deviations for weak Gibbs measures, J. Stat. Phys., 146 (2012), 330-358.doi: 10.1007/s10955-011-0392-7.

    [21]

    P. Walters, "An Introduction to Ergodic Theory," Springer Verlag, New York-Berlin, 1982.

    [22]

    Y. Zhao and Y. Cao, Measure-theoretic pressure for sub-additive potentials, Nonlinear Analysis, 70 (2009), 2237-2247.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return