December  2012, 32(12): 4429-4443. doi: 10.3934/dcds.2012.32.4429

Variational destruction of invariant circles

1. 

Department of Mathematics, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, China

Received  June 2011 Revised  November 2011 Published  August 2012

We construct a sequence of generating functions $(h_n)_{n\in\mathbb{N}}$, arbitrarily close to an integrable system in the $C^r$ topology with $r<4$ for $n$ large enough. With the variational method, we prove that for a given rotation number $\omega$ and $n$ large enough, the exact monotone area-preserving twist maps generated by $(h_n)_{n\in\mathbb{N}}$ admit no invariant circles with rotation number $\omega$.
Citation: Lin Wang. Variational destruction of invariant circles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4429-4443. doi: 10.3934/dcds.2012.32.4429
References:
[1]

V. Bangert, Mather sets for twist maps and geodesics ontori,, Dynamics Reported, 1 (1988), 1.   Google Scholar

[2]

G. Forni, Analytic destruction of invariant circles,, Ergod. Th. & Dynam. Sys., 14 (1994), 267.   Google Scholar

[3]

M. R. Herman, Sur la conjugation différentiable des difféomorphismes du cercle à des rotations,, Publ. Math. IHES, 49 (1979), 5.  doi: 10.1007/BF02684798.  Google Scholar

[4]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau,, Astérisque, 103-104 (1983), 103.   Google Scholar

[5]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau,, Astérisque, 144 (1986), 1.   Google Scholar

[6]

J. N. Mather, Existence of quasi periodic orbits for twist homeomorphisms of the annulus,, Topology, 21 (1982), 457.  doi: 10.1016/0040-9383(82)90023-4.  Google Scholar

[7]

J. N. Mather, A criterion for the non-existence of invariant circle,, Publ. Math. IHES, 63 (1986), 153.  doi: 10.1007/BF02831625.  Google Scholar

[8]

J. N. Mather, Modulus of continuity for Peierls's barrier,, Periodic Solutions of Hamiltonian Systems and Related Topics, 209 (1987), 177.   Google Scholar

[9]

J. N. Mather, Destruction of invariant circles,, Ergod. Th. & Dynam. Sys., 8 (1988), 199.   Google Scholar

[10]

D. Salamon, The Kolmogorov-Arnold-Moser theorem,, Math. Phys. Eletron. J., 10 (2004).   Google Scholar

show all references

References:
[1]

V. Bangert, Mather sets for twist maps and geodesics ontori,, Dynamics Reported, 1 (1988), 1.   Google Scholar

[2]

G. Forni, Analytic destruction of invariant circles,, Ergod. Th. & Dynam. Sys., 14 (1994), 267.   Google Scholar

[3]

M. R. Herman, Sur la conjugation différentiable des difféomorphismes du cercle à des rotations,, Publ. Math. IHES, 49 (1979), 5.  doi: 10.1007/BF02684798.  Google Scholar

[4]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau,, Astérisque, 103-104 (1983), 103.   Google Scholar

[5]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau,, Astérisque, 144 (1986), 1.   Google Scholar

[6]

J. N. Mather, Existence of quasi periodic orbits for twist homeomorphisms of the annulus,, Topology, 21 (1982), 457.  doi: 10.1016/0040-9383(82)90023-4.  Google Scholar

[7]

J. N. Mather, A criterion for the non-existence of invariant circle,, Publ. Math. IHES, 63 (1986), 153.  doi: 10.1007/BF02831625.  Google Scholar

[8]

J. N. Mather, Modulus of continuity for Peierls's barrier,, Periodic Solutions of Hamiltonian Systems and Related Topics, 209 (1987), 177.   Google Scholar

[9]

J. N. Mather, Destruction of invariant circles,, Ergod. Th. & Dynam. Sys., 8 (1988), 199.   Google Scholar

[10]

D. Salamon, The Kolmogorov-Arnold-Moser theorem,, Math. Phys. Eletron. J., 10 (2004).   Google Scholar

[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[7]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[8]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[9]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[10]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[13]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]