February  2012, 32(2): 467-485. doi: 10.3934/dcds.2012.32.467

Asymptotic estimates for unimodular Fourier multipliers on modulation spaces

1. 

Department of Mathematics, Zhejiang Normal University, 321004 Jinhua, China

2. 

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States, United States

Received  August 2010 Revised  June 2011 Published  September 2011

Recently, it has been shown that the unimodular Fourier multipliers $e^{it|\Delta |^{\frac{\alpha }{2}}}$ are bounded on all modulation spaces. In this paper, using the almost orthogonality of projections and some techniques on oscillating integrals, we obtain asymptotic estimates for the unimodular Fourier multipliers $e^{it|\Delta |^{\frac{\alpha }{2}}}$ on the modulation spaces. As applications, we give the grow-up rates of the solutions for the Cauchy problems for the free Schrödinger equation, the wave equation and the Airy equation with the initial data in a modulation space. We also obtain a quantitative form about the solution to the Cauchy problem of the nonlinear dispersive equations.
Citation: Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467
References:
[1]

A. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces,, J. Func. Anal., 246 (2007), 366. doi: 10.1016/j.jfa.2006.12.019. Google Scholar

[2]

A. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces,, Bull. Lond. Math. Soc., 41 (2009), 549. doi: 10.1112/blms/bdp027. Google Scholar

[3]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976). Google Scholar

[4]

E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation,, J. Differential Equations, 245 (2008), 1945. doi: 10.1016/j.jde.2008.07.009. Google Scholar

[5]

Y. Domar, On the spectral synthesis problem for $(n-1)$-dimensional subset of $ \mathbbR ^n,$ $n\geq 2,$, Ark Math, 9 (1971), 23. doi: 10.1007/BF02383635. Google Scholar

[6]

H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Technical Report,, University of Vienna, (1983), 99. Google Scholar

[7]

H. G. Feichtinger, Modulation spaces: Looking back and ahead,, Sampl Theory Signal Image Process, 5 (2006), 109. Google Scholar

[8]

K. Gröchening, "Foundations of Time-Frequency Analysis,", Applied and Numerical Harmonic Analysis, (2001). Google Scholar

[9]

L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces,, Acta Math, 104 (1960), 93. doi: 10.1007/BF02547187. Google Scholar

[10]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages,, Bull. Amer. Math. Soc., 69 (1963), 766. doi: 10.1090/S0002-9904-1963-11025-3. Google Scholar

[11]

A. Miyachi, F. Nicola, S. Rivetti, A. Taracco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces,, Proc. Amer. Math. Soc., 137 (2009), 3869. doi: 10.1090/S0002-9939-09-09968-7. Google Scholar

[12]

J. Sjöstrand, An algebra of pseudodifferential operators,, Math. Res. Lett, 1 (1994), 185. Google Scholar

[13]

E. M. Stein, "Beijing Lectures In Harmonic Analysis," Annals of Mathematics Studies,, \textbf{112}, 112 (1982). Google Scholar

[14]

H. Triebel, "Theory of Function Spaces,", Mathematik und ihre anwendugen in Physik und Technik [Mathematics and its Applications in Physics and Technology], 38 (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[15]

J. Toft, Continuity properties for modulation spaces with applications to pseudo-differential calculus. II,, Ann Global Anal Geom, 26 (2004), 73. doi: 10.1023/B:AGAG.0000023261.94488.f4. Google Scholar

[16]

B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data,, J. Differential Equations, 232 (2007), 36. doi: 10.1016/j.jde.2006.09.004. Google Scholar

[17]

B. Wang, L. Han and C. Huang, Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2253. Google Scholar

[18]

B. Wang, C. Hao and C. Huo, "Introduction on Nonlinear Developing Equations,", Unpublished Lecture Notes, (2009). Google Scholar

[19]

B. Wang, L. Zhao and B. Guo, Isometric decomposition operators function spaces $E_{p,q}^{\lambda}$ and applications to nonlinear evolution equations,, J. Func. Anal., 233 (2006), 1. doi: 10.1016/j.jfa.2005.06.018. Google Scholar

show all references

References:
[1]

A. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces,, J. Func. Anal., 246 (2007), 366. doi: 10.1016/j.jfa.2006.12.019. Google Scholar

[2]

A. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces,, Bull. Lond. Math. Soc., 41 (2009), 549. doi: 10.1112/blms/bdp027. Google Scholar

[3]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976). Google Scholar

[4]

E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation,, J. Differential Equations, 245 (2008), 1945. doi: 10.1016/j.jde.2008.07.009. Google Scholar

[5]

Y. Domar, On the spectral synthesis problem for $(n-1)$-dimensional subset of $ \mathbbR ^n,$ $n\geq 2,$, Ark Math, 9 (1971), 23. doi: 10.1007/BF02383635. Google Scholar

[6]

H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Technical Report,, University of Vienna, (1983), 99. Google Scholar

[7]

H. G. Feichtinger, Modulation spaces: Looking back and ahead,, Sampl Theory Signal Image Process, 5 (2006), 109. Google Scholar

[8]

K. Gröchening, "Foundations of Time-Frequency Analysis,", Applied and Numerical Harmonic Analysis, (2001). Google Scholar

[9]

L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces,, Acta Math, 104 (1960), 93. doi: 10.1007/BF02547187. Google Scholar

[10]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages,, Bull. Amer. Math. Soc., 69 (1963), 766. doi: 10.1090/S0002-9904-1963-11025-3. Google Scholar

[11]

A. Miyachi, F. Nicola, S. Rivetti, A. Taracco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces,, Proc. Amer. Math. Soc., 137 (2009), 3869. doi: 10.1090/S0002-9939-09-09968-7. Google Scholar

[12]

J. Sjöstrand, An algebra of pseudodifferential operators,, Math. Res. Lett, 1 (1994), 185. Google Scholar

[13]

E. M. Stein, "Beijing Lectures In Harmonic Analysis," Annals of Mathematics Studies,, \textbf{112}, 112 (1982). Google Scholar

[14]

H. Triebel, "Theory of Function Spaces,", Mathematik und ihre anwendugen in Physik und Technik [Mathematics and its Applications in Physics and Technology], 38 (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[15]

J. Toft, Continuity properties for modulation spaces with applications to pseudo-differential calculus. II,, Ann Global Anal Geom, 26 (2004), 73. doi: 10.1023/B:AGAG.0000023261.94488.f4. Google Scholar

[16]

B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data,, J. Differential Equations, 232 (2007), 36. doi: 10.1016/j.jde.2006.09.004. Google Scholar

[17]

B. Wang, L. Han and C. Huang, Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2253. Google Scholar

[18]

B. Wang, C. Hao and C. Huo, "Introduction on Nonlinear Developing Equations,", Unpublished Lecture Notes, (2009). Google Scholar

[19]

B. Wang, L. Zhao and B. Guo, Isometric decomposition operators function spaces $E_{p,q}^{\lambda}$ and applications to nonlinear evolution equations,, J. Func. Anal., 233 (2006), 1. doi: 10.1016/j.jfa.2005.06.018. Google Scholar

[1]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[2]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[3]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[4]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[5]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[6]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[7]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[8]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[9]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[12]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[13]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[14]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[15]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[16]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[17]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[18]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[19]

Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic & Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361

[20]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]