February  2012, 32(2): 467-485. doi: 10.3934/dcds.2012.32.467

Asymptotic estimates for unimodular Fourier multipliers on modulation spaces

1. 

Department of Mathematics, Zhejiang Normal University, 321004 Jinhua, China

2. 

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States, United States

Received  August 2010 Revised  June 2011 Published  September 2011

Recently, it has been shown that the unimodular Fourier multipliers $e^{it|\Delta |^{\frac{\alpha }{2}}}$ are bounded on all modulation spaces. In this paper, using the almost orthogonality of projections and some techniques on oscillating integrals, we obtain asymptotic estimates for the unimodular Fourier multipliers $e^{it|\Delta |^{\frac{\alpha }{2}}}$ on the modulation spaces. As applications, we give the grow-up rates of the solutions for the Cauchy problems for the free Schrödinger equation, the wave equation and the Airy equation with the initial data in a modulation space. We also obtain a quantitative form about the solution to the Cauchy problem of the nonlinear dispersive equations.
Citation: Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete & Continuous Dynamical Systems, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467
References:
[1]

A. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Func. Anal., 246 (2007), 366-384. doi: 10.1016/j.jfa.2006.12.019.  Google Scholar

[2]

A. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces, Bull. Lond. Math. Soc., 41 (2009), 549-558. doi: 10.1112/blms/bdp027.  Google Scholar

[3]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[4]

E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation, J. Differential Equations, 245 (2008), 1945-1974. doi: 10.1016/j.jde.2008.07.009.  Google Scholar

[5]

Y. Domar, On the spectral synthesis problem for $(n-1)$-dimensional subset of $ \mathbbR ^n,$ $n\geq 2,$ Ark Math, 9 (1971), 23-37. doi: 10.1007/BF02383635.  Google Scholar

[6]

H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Technical Report, University of Vienna, 1983, and in "Wavelets and Their Applications" (eds. M. Krishna, R. Radha and S. Thangavelu), 99-140, Allied Publishers, New Delhi, 2003. Google Scholar

[7]

H. G. Feichtinger, Modulation spaces: Looking back and ahead, Sampl Theory Signal Image Process, 5 (2006), 109-140.  Google Scholar

[8]

K. Gröchening, "Foundations of Time-Frequency Analysis," Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001.  Google Scholar

[9]

L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math, 104 (1960), 93-139. doi: 10.1007/BF02547187.  Google Scholar

[10]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 69 (1963), 766-770. doi: 10.1090/S0002-9904-1963-11025-3.  Google Scholar

[11]

A. Miyachi, F. Nicola, S. Rivetti, A. Taracco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces, Proc. Amer. Math. Soc., 137 (2009), 3869-3883. doi: 10.1090/S0002-9939-09-09968-7.  Google Scholar

[12]

J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett, 1 (1994), 185-192.  Google Scholar

[13]

E. M. Stein, "Beijing Lectures In Harmonic Analysis," Annals of Mathematics Studies, 112, Princeton University Press, Princeton, NJ, 1982. Google Scholar

[14]

H. Triebel, "Theory of Function Spaces," Mathematik und ihre anwendugen in Physik und Technik [Mathematics and its Applications in Physics and Technology], 38, Akademische Verlagsgesellchaft Geest & Portig K.-G., Leipzig, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[15]

J. Toft, Continuity properties for modulation spaces with applications to pseudo-differential calculus. II, Ann Global Anal Geom, 26 (2004), 73-106. doi: 10.1023/B:AGAG.0000023261.94488.f4.  Google Scholar

[16]

B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations, 232 (2007), 36-73. doi: 10.1016/j.jde.2006.09.004.  Google Scholar

[17]

B. Wang, L. Han and C. Huang, Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2253-2281.  Google Scholar

[18]

B. Wang, C. Hao and C. Huo, "Introduction on Nonlinear Developing Equations," Unpublished Lecture Notes, Beijing University, 2009. Google Scholar

[19]

B. Wang, L. Zhao and B. Guo, Isometric decomposition operators function spaces $E_{p,q}^{\lambda}$ and applications to nonlinear evolution equations, J. Func. Anal., 233 (2006), 1-39. doi: 10.1016/j.jfa.2005.06.018.  Google Scholar

show all references

References:
[1]

A. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Func. Anal., 246 (2007), 366-384. doi: 10.1016/j.jfa.2006.12.019.  Google Scholar

[2]

A. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces, Bull. Lond. Math. Soc., 41 (2009), 549-558. doi: 10.1112/blms/bdp027.  Google Scholar

[3]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[4]

E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation, J. Differential Equations, 245 (2008), 1945-1974. doi: 10.1016/j.jde.2008.07.009.  Google Scholar

[5]

Y. Domar, On the spectral synthesis problem for $(n-1)$-dimensional subset of $ \mathbbR ^n,$ $n\geq 2,$ Ark Math, 9 (1971), 23-37. doi: 10.1007/BF02383635.  Google Scholar

[6]

H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Technical Report, University of Vienna, 1983, and in "Wavelets and Their Applications" (eds. M. Krishna, R. Radha and S. Thangavelu), 99-140, Allied Publishers, New Delhi, 2003. Google Scholar

[7]

H. G. Feichtinger, Modulation spaces: Looking back and ahead, Sampl Theory Signal Image Process, 5 (2006), 109-140.  Google Scholar

[8]

K. Gröchening, "Foundations of Time-Frequency Analysis," Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001.  Google Scholar

[9]

L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math, 104 (1960), 93-139. doi: 10.1007/BF02547187.  Google Scholar

[10]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc., 69 (1963), 766-770. doi: 10.1090/S0002-9904-1963-11025-3.  Google Scholar

[11]

A. Miyachi, F. Nicola, S. Rivetti, A. Taracco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces, Proc. Amer. Math. Soc., 137 (2009), 3869-3883. doi: 10.1090/S0002-9939-09-09968-7.  Google Scholar

[12]

J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett, 1 (1994), 185-192.  Google Scholar

[13]

E. M. Stein, "Beijing Lectures In Harmonic Analysis," Annals of Mathematics Studies, 112, Princeton University Press, Princeton, NJ, 1982. Google Scholar

[14]

H. Triebel, "Theory of Function Spaces," Mathematik und ihre anwendugen in Physik und Technik [Mathematics and its Applications in Physics and Technology], 38, Akademische Verlagsgesellchaft Geest & Portig K.-G., Leipzig, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[15]

J. Toft, Continuity properties for modulation spaces with applications to pseudo-differential calculus. II, Ann Global Anal Geom, 26 (2004), 73-106. doi: 10.1023/B:AGAG.0000023261.94488.f4.  Google Scholar

[16]

B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations, 232 (2007), 36-73. doi: 10.1016/j.jde.2006.09.004.  Google Scholar

[17]

B. Wang, L. Han and C. Huang, Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2253-2281.  Google Scholar

[18]

B. Wang, C. Hao and C. Huo, "Introduction on Nonlinear Developing Equations," Unpublished Lecture Notes, Beijing University, 2009. Google Scholar

[19]

B. Wang, L. Zhao and B. Guo, Isometric decomposition operators function spaces $E_{p,q}^{\lambda}$ and applications to nonlinear evolution equations, J. Func. Anal., 233 (2006), 1-39. doi: 10.1016/j.jfa.2005.06.018.  Google Scholar

[1]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[2]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[3]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[4]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[5]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[6]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[7]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[8]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[9]

Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292

[10]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[11]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[12]

Qing Hong, Guorong Hu. Molecular decomposition and a class of Fourier multipliers for bi-parameter modulation spaces. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3103-3120. doi: 10.3934/cpaa.2019139

[13]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[14]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[15]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[16]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[17]

Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030

[18]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[19]

Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145

[20]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (29)

Other articles
by authors

[Back to Top]