February  2012, 32(2): 467-485. doi: 10.3934/dcds.2012.32.467

Asymptotic estimates for unimodular Fourier multipliers on modulation spaces

1. 

Department of Mathematics, Zhejiang Normal University, 321004 Jinhua, China

2. 

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States, United States

Received  August 2010 Revised  June 2011 Published  September 2011

Recently, it has been shown that the unimodular Fourier multipliers $e^{it|\Delta |^{\frac{\alpha }{2}}}$ are bounded on all modulation spaces. In this paper, using the almost orthogonality of projections and some techniques on oscillating integrals, we obtain asymptotic estimates for the unimodular Fourier multipliers $e^{it|\Delta |^{\frac{\alpha }{2}}}$ on the modulation spaces. As applications, we give the grow-up rates of the solutions for the Cauchy problems for the free Schrödinger equation, the wave equation and the Airy equation with the initial data in a modulation space. We also obtain a quantitative form about the solution to the Cauchy problem of the nonlinear dispersive equations.
Citation: Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467
References:
[1]

A. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces,, J. Func. Anal., 246 (2007), 366.  doi: 10.1016/j.jfa.2006.12.019.  Google Scholar

[2]

A. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces,, Bull. Lond. Math. Soc., 41 (2009), 549.  doi: 10.1112/blms/bdp027.  Google Scholar

[3]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[4]

E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation,, J. Differential Equations, 245 (2008), 1945.  doi: 10.1016/j.jde.2008.07.009.  Google Scholar

[5]

Y. Domar, On the spectral synthesis problem for $(n-1)$-dimensional subset of $ \mathbbR ^n,$ $n\geq 2,$, Ark Math, 9 (1971), 23.  doi: 10.1007/BF02383635.  Google Scholar

[6]

H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Technical Report,, University of Vienna, (1983), 99.   Google Scholar

[7]

H. G. Feichtinger, Modulation spaces: Looking back and ahead,, Sampl Theory Signal Image Process, 5 (2006), 109.   Google Scholar

[8]

K. Gröchening, "Foundations of Time-Frequency Analysis,", Applied and Numerical Harmonic Analysis, (2001).   Google Scholar

[9]

L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces,, Acta Math, 104 (1960), 93.  doi: 10.1007/BF02547187.  Google Scholar

[10]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages,, Bull. Amer. Math. Soc., 69 (1963), 766.  doi: 10.1090/S0002-9904-1963-11025-3.  Google Scholar

[11]

A. Miyachi, F. Nicola, S. Rivetti, A. Taracco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces,, Proc. Amer. Math. Soc., 137 (2009), 3869.  doi: 10.1090/S0002-9939-09-09968-7.  Google Scholar

[12]

J. Sjöstrand, An algebra of pseudodifferential operators,, Math. Res. Lett, 1 (1994), 185.   Google Scholar

[13]

E. M. Stein, "Beijing Lectures In Harmonic Analysis," Annals of Mathematics Studies,, \textbf{112}, 112 (1982).   Google Scholar

[14]

H. Triebel, "Theory of Function Spaces,", Mathematik und ihre anwendugen in Physik und Technik [Mathematics and its Applications in Physics and Technology], 38 (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[15]

J. Toft, Continuity properties for modulation spaces with applications to pseudo-differential calculus. II,, Ann Global Anal Geom, 26 (2004), 73.  doi: 10.1023/B:AGAG.0000023261.94488.f4.  Google Scholar

[16]

B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data,, J. Differential Equations, 232 (2007), 36.  doi: 10.1016/j.jde.2006.09.004.  Google Scholar

[17]

B. Wang, L. Han and C. Huang, Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2253.   Google Scholar

[18]

B. Wang, C. Hao and C. Huo, "Introduction on Nonlinear Developing Equations,", Unpublished Lecture Notes, (2009).   Google Scholar

[19]

B. Wang, L. Zhao and B. Guo, Isometric decomposition operators function spaces $E_{p,q}^{\lambda}$ and applications to nonlinear evolution equations,, J. Func. Anal., 233 (2006), 1.  doi: 10.1016/j.jfa.2005.06.018.  Google Scholar

show all references

References:
[1]

A. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces,, J. Func. Anal., 246 (2007), 366.  doi: 10.1016/j.jfa.2006.12.019.  Google Scholar

[2]

A. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces,, Bull. Lond. Math. Soc., 41 (2009), 549.  doi: 10.1112/blms/bdp027.  Google Scholar

[3]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[4]

E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation,, J. Differential Equations, 245 (2008), 1945.  doi: 10.1016/j.jde.2008.07.009.  Google Scholar

[5]

Y. Domar, On the spectral synthesis problem for $(n-1)$-dimensional subset of $ \mathbbR ^n,$ $n\geq 2,$, Ark Math, 9 (1971), 23.  doi: 10.1007/BF02383635.  Google Scholar

[6]

H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Technical Report,, University of Vienna, (1983), 99.   Google Scholar

[7]

H. G. Feichtinger, Modulation spaces: Looking back and ahead,, Sampl Theory Signal Image Process, 5 (2006), 109.   Google Scholar

[8]

K. Gröchening, "Foundations of Time-Frequency Analysis,", Applied and Numerical Harmonic Analysis, (2001).   Google Scholar

[9]

L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces,, Acta Math, 104 (1960), 93.  doi: 10.1007/BF02547187.  Google Scholar

[10]

W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages,, Bull. Amer. Math. Soc., 69 (1963), 766.  doi: 10.1090/S0002-9904-1963-11025-3.  Google Scholar

[11]

A. Miyachi, F. Nicola, S. Rivetti, A. Taracco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces,, Proc. Amer. Math. Soc., 137 (2009), 3869.  doi: 10.1090/S0002-9939-09-09968-7.  Google Scholar

[12]

J. Sjöstrand, An algebra of pseudodifferential operators,, Math. Res. Lett, 1 (1994), 185.   Google Scholar

[13]

E. M. Stein, "Beijing Lectures In Harmonic Analysis," Annals of Mathematics Studies,, \textbf{112}, 112 (1982).   Google Scholar

[14]

H. Triebel, "Theory of Function Spaces,", Mathematik und ihre anwendugen in Physik und Technik [Mathematics and its Applications in Physics and Technology], 38 (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[15]

J. Toft, Continuity properties for modulation spaces with applications to pseudo-differential calculus. II,, Ann Global Anal Geom, 26 (2004), 73.  doi: 10.1023/B:AGAG.0000023261.94488.f4.  Google Scholar

[16]

B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data,, J. Differential Equations, 232 (2007), 36.  doi: 10.1016/j.jde.2006.09.004.  Google Scholar

[17]

B. Wang, L. Han and C. Huang, Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2253.   Google Scholar

[18]

B. Wang, C. Hao and C. Huo, "Introduction on Nonlinear Developing Equations,", Unpublished Lecture Notes, (2009).   Google Scholar

[19]

B. Wang, L. Zhao and B. Guo, Isometric decomposition operators function spaces $E_{p,q}^{\lambda}$ and applications to nonlinear evolution equations,, J. Func. Anal., 233 (2006), 1.  doi: 10.1016/j.jfa.2005.06.018.  Google Scholar

[1]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2020393

[2]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[8]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[9]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[10]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[11]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[12]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[13]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[16]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006

[17]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[18]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[19]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[20]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (25)

Other articles
by authors

[Back to Top]