\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pressures for asymptotically sub-additive potentials under a mistake function

Abstract Related Papers Cited by
  • This paper defines the pressure for asymptotically sub-additive potentials under a mistake function, including the measure-theoretical and the topological versions. Using the advanced techniques of ergodic theory and topological dynamics, we reveal a variational principle for the new defined topological pressure without any additional conditions on the potentials and the compact metric space.
    Mathematics Subject Classification: Primary: 37D35; Secondary: 37A35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Th. Dynam. Syst., 16 (1996), 871-927.doi: 10.1017/S0143385700010117.

    [2]

    L. M. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures, Discrete Continuous Dynam. Systems, 16 (2006), 279-305.

    [3]

    R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture notes in Math., 470, Springer-Verlag, Berlin, 1975.

    [4]

    R. Bowen, Hausdorff dimension of quasicircles, Inst. Haustes Études Sci. Publ. Math., 50 (1979), 11-25.

    [5]

    Y. Cao, D. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Continuous Dynam. Systems A, 20 (2008), 639-657.

    [6]

    K. Falconer, A sub-additive thermodynamic formalism for mixing repellers, J. Phys. A, 21 (1988), L737-L742.doi: 10.1088/0305-4470/21/14/005.

    [7]

    D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., 297 (2010), 1-43.doi: 10.1007/s00220-010-1031-x.

    [8]

    L. He, J. Lv and L. Zhou, Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718.doi: 10.1007/s10114-004-0368-5.

    [9]

    A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms, Publ. IHES, 51 (1980), 137-173.

    [10]

    A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems," Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, Cambridge, 1995.

    [11]

    A. Mummert, The thermodynamic formalism for almost-additive sequences, Discrete Continuous Dynam. Systems A, 16 (2006), 435-454.

    [12]

    Y. Pesin and B. Pitskel', Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen., 18 (1984), 50-63, 96.doi: 10.1007/BF01083692.

    [13]

    Y. Pesin, Dimension type characteristics for invariant sets of dynamical systems, Russian Math. Surveys, 43 (1988), 111-151.doi: 10.1070/RM1988v043n04ABEH001892.

    [14]

    Y. Pesin, "Dimension Theory in Dynamical Systems, Contemporary Views and Applications," University of Chicago Press, Chicago, 1997.

    [15]

    C. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007), 929-956.doi: 10.1017/S0143385706000824.

    [16]

    C. Pfister and W. Sullivan, Large deviations estimates for dynamical systems without the specification property. Application to the $\beta$-shifts, Nonlinearity, 18 (2005), 237-261.

    [17]

    D. Ruelle, Statistical mechanics on a compact set with $Z^{\upsilon}$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973), 237-251.doi: 10.2307/1996437.

    [18]

    D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, 5. Addison-Wesley Publishing Co., Reading Mass., 1978.

    [19]

    D. ThompsonIrregular sets, the $\beta-$transformation and the almost specification property, preprint, arXiv:0905.0739v1.

    [20]

    P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

    [21]

    P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971.doi: 10.2307/2373682.

    [22]

    G. Zhang, Variational principles of pressure, Discrete Continuous Dynam. Systems A, 24 (2009), 1409-1435.

    [23]

    Y. Zhao and Y. Cao, Measure-theoretic pressure for subadditive potentials, Nonlinear Analysis, 70 (2009), 2237-2247.doi: 10.1016/j.na.2008.03.003.

    [24]

    Y. Zhao, L. Zhang and Y. Cao, The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials, Nonlinear Analysis, 74 (2011), 5015-5022.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return