Citation: |
[1] |
C. Cheverry, Justification de l'optique géométrique non linéaire pour un système de lois de conservation, Duke Math. J., 87 (1997), 213-263.doi: 10.1215/S0012-7094-97-08710-X. |
[2] |
C. Cheverry, I. Gallagher, T. Paul and L. Saint-Raymond, Semiclassical and spectral analysis of oceanic waves, To appear in Duke Math. J., arXiv:1005.1146. |
[3] |
C. Cheverry, I. Gallagher, T. Paul and L. Saint-Raymond, Trapping Rossby waves, C. R. Math. Acad. Sci. Paris, 347 (2009), 879-884. |
[4] |
C. Cheverry, O. Guès and G. Métivier, Oscillations fortes sur un champ linéairement dégénéré, Ann. Sci. Ècole Norm. Sup., 36 (2003), 691-745. |
[5] |
Y. Choquet-Bruhat, Ondes asymptotiques et approchées pour des systèmes d'équations aux dérivées partielles non linéaires, J. Math. Pures Appl., 48 (1969), 117-158. |
[6] |
P. Donnat, J.-L. Joly, G. Metivier and J. Rauch, Diffractive nonlinear geometric optics, In "Séminaire sur les Èquations aux Dérivées Partielles," 1995-1996, Exp. No. XVII, 25 pp., Ècole Polytech., Palaiseau, 1996. |
[7] |
E. Dumas, Periodic multiphase nonlinear diffractive optics with curved phases, Indiana Univ. Math. J., 52 (2003), 769-810. |
[8] |
A. Dutrifoy and A. Majda, The dynamics of equatorial long waves: A singular limit with fast variable coefficients, Commun. Math. Sci., 4 (2006). |
[9] |
A. Dutrifoy, A. Majda and S. Schochet, A simple justification of the singular limit for equatorial shallow-water dynamics, Comm. Pure Appl. Math., 62 (2009), 322-333.doi: 10.1002/cpa.20248. |
[10] |
I. Gallagher and L. Saint-Raymond, Mathematical study of the betaplane model: Equatorial waves and convergence results, Mém. Soc. Math. Fr., 107 (2007), v+116 pp. |
[11] |
H. P. Greenspan, "The Theory of Rotating Fluids," Cambridge Monographs on Mechanics and Applied Mathematics, 1980, 328 pp. |
[12] |
O. Guès, Ondes multidimensionnelles $\epsilon$-stratifiées et oscillations, Duke Math. J., 68 (1992), 401-446.doi: 10.1215/S0012-7094-92-06816-5. |
[13] |
O. Guès, Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Anal., 6 (1993), 241-269. |
[14] |
J. K. Hunter, A. Majda and R. Rosales, Resonantly interacting, weakly nonlinear hyperbolic waves. II. Several space variables, Stud. Appl. Math., 75 (1986), 187-226. |
[15] |
J.-L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics, Ann. Sci. École Norm. Sup., 28 (1995), 51-113. |
[16] |
J.-L. Joly, G. Métivier and J. Rauch, Nonlinear oscillations beyond caustics, Comm. Pure Appl. Math., 49 (1996), 443-527.doi: 10.1002/(SICI)1097-0312(199605)49:5<443::AID-CPA1>3.0.CO;2-B. |
[17] |
J.-L. Joly, G. Métivier and J. Rauch, Transparent nonlinear geometric optics and Maxwell-Bloch equations, J. Differential Equations, 166 (2000), 175-250.doi: 10.1006/jdeq.2000.3794. |
[18] |
D. Lannes and J. Rauch, Validity of nonlinear geometric optics with times growing logarithmically, Proc. Amer. Math. Soc., 129 (2001), 1087-1096.doi: 10.1090/S0002-9939-00-05845-7. |
[19] |
A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean," Courant Lecture Notes in Mathematics, 9, Providence, RI, American Mathematical Society (AMS), New York, NY, Courant Institute of Mathematical Sciences, 1996, 234 p. |
[20] |
T. Paul, Échelles de temps pour l'évolution quantique à petite constante de Planck (French) [Time scales of a quantum evolution with small Planck constant], In "Séminaire sur les Équations aux Dérivées Partielles," 2007-2008, Exp. No. IV, 21 pp., École Polytech., Palaiseau, 2009. |
[21] | |
[22] |
D. Sanchez, Long waves in ferromagnetic media, Khokhlov-Zabolotskaya equation, J. Differential Equations, 210 (2005), 263-289.doi: 10.1016/j.jde.2004.08.017. |
[23] |
R. Sentis, Mathematical models for laser-plasma interaction, M2AN Math. Model. Numer. Anal., 39 (2005), 275-318.doi: 10.1051/m2an:2005014. |
[24] |
B. Texier, The short-wave limit for nonlinear, symmetric, hyperbolic systems, Adv. Differential Equations, 9 (2004), 1-52. |