February  2012, 32(2): 499-538. doi: 10.3934/dcds.2012.32.499

On some geometry of propagation in diffractive time scales

1. 

UMR6625, Université Rennes 1, Campus de Beaulieu, 263 avenue du Général Leclerc CS 74205, 35042 Rennes, France

2. 

UMR7640, Centre de Mathmatiques Laurent Schwartz, École polytechnique, France

Received  September 2010 Revised  December 2010 Published  September 2011

In this article, we develop a non linear geometric optics which presents the two main following features. It is valid in diffractive times and it extends the classical approaches [7, 17, 18, 24] to the case of fast variable coefficients. In this context, we can show that the energy is transported along the rays associated with a non usual long-time hamiltonian. Our analysis needs structural assumptions and initial data suitably polrarized to be implemented. All the required conditions are met concerning a current model [2, 3, 8, 9, 10, 11, 19, 21] arising in fluid mechanics, which was the original motivation of our work. As a by product, we get results complementary to the litterature concerning the propagation of the Rossby waves which play a part in the description of large oceanic currents, like Gulf stream or Kuroshio.
Citation: Christophe Cheverry, Thierry Paul. On some geometry of propagation in diffractive time scales. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 499-538. doi: 10.3934/dcds.2012.32.499
References:
[1]

C. Cheverry, Justification de l'optique géométrique non linéaire pour un système de lois de conservation,, Duke Math. J., 87 (1997), 213.  doi: 10.1215/S0012-7094-97-08710-X.  Google Scholar

[2]

C. Cheverry, I. Gallagher, T. Paul and L. Saint-Raymond, Semiclassical and spectral analysis of oceanic waves,, To appear in Duke Math. J., ().   Google Scholar

[3]

C. Cheverry, I. Gallagher, T. Paul and L. Saint-Raymond, Trapping Rossby waves,, C. R. Math. Acad. Sci. Paris, 347 (2009), 879.   Google Scholar

[4]

C. Cheverry, O. Guès and G. Métivier, Oscillations fortes sur un champ linéairement dégénéré,, Ann. Sci. Ècole Norm. Sup., 36 (2003), 691.   Google Scholar

[5]

Y. Choquet-Bruhat, Ondes asymptotiques et approchées pour des systèmes d'équations aux dérivées partielles non linéaires,, J. Math. Pures Appl., 48 (1969), 117.   Google Scholar

[6]

P. Donnat, J.-L. Joly, G. Metivier and J. Rauch, Diffractive nonlinear geometric optics,, In, (1996), 1995.   Google Scholar

[7]

E. Dumas, Periodic multiphase nonlinear diffractive optics with curved phases,, Indiana Univ. Math. J., 52 (2003), 769.   Google Scholar

[8]

A. Dutrifoy and A. Majda, The dynamics of equatorial long waves: A singular limit with fast variable coefficients,, Commun. Math. Sci., 4 (2006).   Google Scholar

[9]

A. Dutrifoy, A. Majda and S. Schochet, A simple justification of the singular limit for equatorial shallow-water dynamics,, Comm. Pure Appl. Math., 62 (2009), 322.  doi: 10.1002/cpa.20248.  Google Scholar

[10]

I. Gallagher and L. Saint-Raymond, Mathematical study of the betaplane model: Equatorial waves and convergence results,, Mém. Soc. Math. Fr., 107 (2007).   Google Scholar

[11]

H. P. Greenspan, "The Theory of Rotating Fluids,", Cambridge Monographs on Mechanics and Applied Mathematics, (1980).   Google Scholar

[12]

O. Guès, Ondes multidimensionnelles $\epsilon$-stratifiées et oscillations,, Duke Math. J., 68 (1992), 401.  doi: 10.1215/S0012-7094-92-06816-5.  Google Scholar

[13]

O. Guès, Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires,, Asymptotic Anal., 6 (1993), 241.   Google Scholar

[14]

J. K. Hunter, A. Majda and R. Rosales, Resonantly interacting, weakly nonlinear hyperbolic waves. II. Several space variables,, Stud. Appl. Math., 75 (1986), 187.   Google Scholar

[15]

J.-L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics,, Ann. Sci. École Norm. Sup., 28 (1995), 51.   Google Scholar

[16]

J.-L. Joly, G. Métivier and J. Rauch, Nonlinear oscillations beyond caustics,, Comm. Pure Appl. Math., 49 (1996), 443.  doi: 10.1002/(SICI)1097-0312(199605)49:5<443::AID-CPA1>3.0.CO;2-B.  Google Scholar

[17]

J.-L. Joly, G. Métivier and J. Rauch, Transparent nonlinear geometric optics and Maxwell-Bloch equations,, J. Differential Equations, 166 (2000), 175.  doi: 10.1006/jdeq.2000.3794.  Google Scholar

[18]

D. Lannes and J. Rauch, Validity of nonlinear geometric optics with times growing logarithmically,, Proc. Amer. Math. Soc., 129 (2001), 1087.  doi: 10.1090/S0002-9939-00-05845-7.  Google Scholar

[19]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", Courant Lecture Notes in Mathematics, 9 (1996).   Google Scholar

[20]

T. Paul, Échelles de temps pour l'évolution quantique à petite constante de Planck (French) [Time scales of a quantum evolution with small Planck constant],, In, (2009), 2007.   Google Scholar

[21]

J. Pedlosky, "Ocean Circulation Theory,", Springer, (1996).   Google Scholar

[22]

D. Sanchez, Long waves in ferromagnetic media, Khokhlov-Zabolotskaya equation,, J. Differential Equations, 210 (2005), 263.  doi: 10.1016/j.jde.2004.08.017.  Google Scholar

[23]

R. Sentis, Mathematical models for laser-plasma interaction,, M2AN Math. Model. Numer. Anal., 39 (2005), 275.  doi: 10.1051/m2an:2005014.  Google Scholar

[24]

B. Texier, The short-wave limit for nonlinear, symmetric, hyperbolic systems,, Adv. Differential Equations, 9 (2004), 1.   Google Scholar

show all references

References:
[1]

C. Cheverry, Justification de l'optique géométrique non linéaire pour un système de lois de conservation,, Duke Math. J., 87 (1997), 213.  doi: 10.1215/S0012-7094-97-08710-X.  Google Scholar

[2]

C. Cheverry, I. Gallagher, T. Paul and L. Saint-Raymond, Semiclassical and spectral analysis of oceanic waves,, To appear in Duke Math. J., ().   Google Scholar

[3]

C. Cheverry, I. Gallagher, T. Paul and L. Saint-Raymond, Trapping Rossby waves,, C. R. Math. Acad. Sci. Paris, 347 (2009), 879.   Google Scholar

[4]

C. Cheverry, O. Guès and G. Métivier, Oscillations fortes sur un champ linéairement dégénéré,, Ann. Sci. Ècole Norm. Sup., 36 (2003), 691.   Google Scholar

[5]

Y. Choquet-Bruhat, Ondes asymptotiques et approchées pour des systèmes d'équations aux dérivées partielles non linéaires,, J. Math. Pures Appl., 48 (1969), 117.   Google Scholar

[6]

P. Donnat, J.-L. Joly, G. Metivier and J. Rauch, Diffractive nonlinear geometric optics,, In, (1996), 1995.   Google Scholar

[7]

E. Dumas, Periodic multiphase nonlinear diffractive optics with curved phases,, Indiana Univ. Math. J., 52 (2003), 769.   Google Scholar

[8]

A. Dutrifoy and A. Majda, The dynamics of equatorial long waves: A singular limit with fast variable coefficients,, Commun. Math. Sci., 4 (2006).   Google Scholar

[9]

A. Dutrifoy, A. Majda and S. Schochet, A simple justification of the singular limit for equatorial shallow-water dynamics,, Comm. Pure Appl. Math., 62 (2009), 322.  doi: 10.1002/cpa.20248.  Google Scholar

[10]

I. Gallagher and L. Saint-Raymond, Mathematical study of the betaplane model: Equatorial waves and convergence results,, Mém. Soc. Math. Fr., 107 (2007).   Google Scholar

[11]

H. P. Greenspan, "The Theory of Rotating Fluids,", Cambridge Monographs on Mechanics and Applied Mathematics, (1980).   Google Scholar

[12]

O. Guès, Ondes multidimensionnelles $\epsilon$-stratifiées et oscillations,, Duke Math. J., 68 (1992), 401.  doi: 10.1215/S0012-7094-92-06816-5.  Google Scholar

[13]

O. Guès, Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires,, Asymptotic Anal., 6 (1993), 241.   Google Scholar

[14]

J. K. Hunter, A. Majda and R. Rosales, Resonantly interacting, weakly nonlinear hyperbolic waves. II. Several space variables,, Stud. Appl. Math., 75 (1986), 187.   Google Scholar

[15]

J.-L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics,, Ann. Sci. École Norm. Sup., 28 (1995), 51.   Google Scholar

[16]

J.-L. Joly, G. Métivier and J. Rauch, Nonlinear oscillations beyond caustics,, Comm. Pure Appl. Math., 49 (1996), 443.  doi: 10.1002/(SICI)1097-0312(199605)49:5<443::AID-CPA1>3.0.CO;2-B.  Google Scholar

[17]

J.-L. Joly, G. Métivier and J. Rauch, Transparent nonlinear geometric optics and Maxwell-Bloch equations,, J. Differential Equations, 166 (2000), 175.  doi: 10.1006/jdeq.2000.3794.  Google Scholar

[18]

D. Lannes and J. Rauch, Validity of nonlinear geometric optics with times growing logarithmically,, Proc. Amer. Math. Soc., 129 (2001), 1087.  doi: 10.1090/S0002-9939-00-05845-7.  Google Scholar

[19]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", Courant Lecture Notes in Mathematics, 9 (1996).   Google Scholar

[20]

T. Paul, Échelles de temps pour l'évolution quantique à petite constante de Planck (French) [Time scales of a quantum evolution with small Planck constant],, In, (2009), 2007.   Google Scholar

[21]

J. Pedlosky, "Ocean Circulation Theory,", Springer, (1996).   Google Scholar

[22]

D. Sanchez, Long waves in ferromagnetic media, Khokhlov-Zabolotskaya equation,, J. Differential Equations, 210 (2005), 263.  doi: 10.1016/j.jde.2004.08.017.  Google Scholar

[23]

R. Sentis, Mathematical models for laser-plasma interaction,, M2AN Math. Model. Numer. Anal., 39 (2005), 275.  doi: 10.1051/m2an:2005014.  Google Scholar

[24]

B. Texier, The short-wave limit for nonlinear, symmetric, hyperbolic systems,, Adv. Differential Equations, 9 (2004), 1.   Google Scholar

[1]

Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89

[2]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020050

[3]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[4]

Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 649-666. doi: 10.3934/dcds.2004.11.649

[5]

Wen-Rong Dai. Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3501-3524. doi: 10.3934/dcds.2012.32.3501

[6]

N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079

[7]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[8]

Kateryna Marynets. Study of a nonlinear boundary-value problem of geophysical relevance. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4771-4781. doi: 10.3934/dcds.2019194

[9]

Shin Kiriki, Ming-Chia Li, Teruhiko Soma. Geometric Lorenz flows with historic behavior. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7021-7028. doi: 10.3934/dcds.2016105

[10]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[11]

Fabrice Delbary, Kim Knudsen. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem. Inverse Problems & Imaging, 2014, 8 (4) : 991-1012. doi: 10.3934/ipi.2014.8.991

[12]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[13]

Luis Barreira, Christian Wolf. Dimension and ergodic decompositions for hyperbolic flows. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 201-212. doi: 10.3934/dcds.2007.17.201

[14]

Gianluca Crippa, Milton C. Lopes Filho, Evelyne Miot, Helena J. Nussenzveig Lopes. Flows of vector fields with point singularities and the vortex-wave system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2405-2417. doi: 10.3934/dcds.2016.36.2405

[15]

Andrey Shishkov, Laurent Véron. Propagation of singularities of nonlinear heat flow in fissured media. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1769-1782. doi: 10.3934/cpaa.2013.12.1769

[16]

Chang-Shou Lin, Lei Zhang. Classification of radial solutions to Liouville systems with singularities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2617-2637. doi: 10.3934/dcds.2014.34.2617

[17]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

[18]

Ruiqi Jiang, Youde Wang, Jun Yang. Vortex structures for some geometric flows from pseudo-Euclidean spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1745-1777. doi: 10.3934/dcds.2019076

[19]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[20]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]