February  2012, 32(2): 605-617. doi: 10.3934/dcds.2012.32.605

On strange attractors in a class of pinched skew products

1. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona

Received  October 2010 Revised  July 2011 Published  September 2011

In this paper we construct strange attractors in a class of pinched skew product dynamical systems over homeomorphims on a compact metric space. We assume that maps between fibers satisfy Inada conditions and that the base space is a super-repeller (it is invariant and its vertical Lyapunov exponent is $+\infty$). In particular, we prove the existence of a measurable but non-continuous invariant graph, whose vertical Lyapunov exponent is negative. %We will refer to such an object as a strange attractor.
    Since the dynamics on the strange attractor is the one given by the base homeomorphism, we will say that it is a strange chaotic attractor or a strange non-chaotic attractor depending on the fact that the dynamics on the base is chaotic or non-chaotic. The results complement the paper by G. Keller on rigorous proofs of existence of strange non-chaotic attractors.
Citation: Àlex Haro. On strange attractors in a class of pinched skew products. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605
References:
[1]

Lluís Alsedà and Michał Misiurewicz, Attractors for unimodal quasiperiodically forced maps,, J. Difference Equ. Appl., 14 (2008), 1175.  doi: 10.1080/10236190802332274.  Google Scholar

[2]

Kristian Bjerklöv, Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations,, Ergodic Theory Dynam. Systems, 25 (2005), 1015.   Google Scholar

[3]

Kristian Bjerklöv, SNA's in the quasi-periodic quadratic family,, Comm. Math. Phys., 286 (2009), 137.  doi: 10.1007/s00220-008-0626-y.  Google Scholar

[4]

Z. I. Bezhaeva and V. I. Oseledets, On an example of a "strange nonchaotic attractor'',, Funktsional. Anal. i Prilozhen., 30 (1996), 1.   Google Scholar

[5]

Henk W. Broer, Carles Simó and Renato Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871.  doi: 10.3934/dcdsb.2010.14.871.  Google Scholar

[6]

Paul Glendinning, Global attractors of pinched skew products,, Dyn. Syst., 17 (2002), 287.  doi: 10.1080/14689360210160878.  Google Scholar

[7]

Celso Grebogi, Edward Ott, Steven Pelikan and James A. Yorke, Strange attractors that are not chaotic,, Phys. D, 13 (1984), 261.  doi: 10.1016/0167-2789(84)90282-3.  Google Scholar

[8]

Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension $2$,, Comment. Math. Helv., 58 (1983), 453.   Google Scholar

[9]

Àlex Haro and Joaquim Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006).   Google Scholar

[10]

À. Haro and C. Simó, To be or not to be an SNA: That is the question, 2005., Available from: \url{http://www.maia.ub.es/dsg/2005/0503haro.pdf}., (2005).   Google Scholar

[11]

Tobias H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products,, Ergodic Theory Dynam. Systems, 27 (2007), 493.   Google Scholar

[12]

Tobias H. Jäger, Strange non-chaotic attractors in quasiperiodically forced circle maps,, Comm. Math. Phys., 289 (2009), 253.  doi: 10.1007/s00220-009-0753-0.  Google Scholar

[13]

Tobias H. Jäger, The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations,, Mem. Amer. Math. Soc., 201 (2009).   Google Scholar

[14]

Àngel Jorba and Joan Carles Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537.  doi: 10.3934/dcdsb.2008.10.537.  Google Scholar

[15]

Kunihiko Kaneko, Fractalization of torus,, Progr. Theoret. Phys., 71 (1984), 1112.  doi: 10.1143/PTP.71.1112.  Google Scholar

[16]

Gerhard Keller, A note on strange nonchaotic attractors,, Fund. Math., 151 (1996), 139.   Google Scholar

[17]

Ken-Ichi Inada, On a two-sector model of economic growth: Comments and a generalization,, The Review of Economic Studies, 30 (1963), 119.  doi: 10.2307/2295809.  Google Scholar

[18]

Awadhesh Prasad, Surendra Singh Negi and Ramakrishna Ramaswamy, Strange nonchaotic attractors,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291.  doi: 10.1142/S0218127401002195.  Google Scholar

show all references

References:
[1]

Lluís Alsedà and Michał Misiurewicz, Attractors for unimodal quasiperiodically forced maps,, J. Difference Equ. Appl., 14 (2008), 1175.  doi: 10.1080/10236190802332274.  Google Scholar

[2]

Kristian Bjerklöv, Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations,, Ergodic Theory Dynam. Systems, 25 (2005), 1015.   Google Scholar

[3]

Kristian Bjerklöv, SNA's in the quasi-periodic quadratic family,, Comm. Math. Phys., 286 (2009), 137.  doi: 10.1007/s00220-008-0626-y.  Google Scholar

[4]

Z. I. Bezhaeva and V. I. Oseledets, On an example of a "strange nonchaotic attractor'',, Funktsional. Anal. i Prilozhen., 30 (1996), 1.   Google Scholar

[5]

Henk W. Broer, Carles Simó and Renato Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871.  doi: 10.3934/dcdsb.2010.14.871.  Google Scholar

[6]

Paul Glendinning, Global attractors of pinched skew products,, Dyn. Syst., 17 (2002), 287.  doi: 10.1080/14689360210160878.  Google Scholar

[7]

Celso Grebogi, Edward Ott, Steven Pelikan and James A. Yorke, Strange attractors that are not chaotic,, Phys. D, 13 (1984), 261.  doi: 10.1016/0167-2789(84)90282-3.  Google Scholar

[8]

Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension $2$,, Comment. Math. Helv., 58 (1983), 453.   Google Scholar

[9]

Àlex Haro and Joaquim Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006).   Google Scholar

[10]

À. Haro and C. Simó, To be or not to be an SNA: That is the question, 2005., Available from: \url{http://www.maia.ub.es/dsg/2005/0503haro.pdf}., (2005).   Google Scholar

[11]

Tobias H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products,, Ergodic Theory Dynam. Systems, 27 (2007), 493.   Google Scholar

[12]

Tobias H. Jäger, Strange non-chaotic attractors in quasiperiodically forced circle maps,, Comm. Math. Phys., 289 (2009), 253.  doi: 10.1007/s00220-009-0753-0.  Google Scholar

[13]

Tobias H. Jäger, The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations,, Mem. Amer. Math. Soc., 201 (2009).   Google Scholar

[14]

Àngel Jorba and Joan Carles Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537.  doi: 10.3934/dcdsb.2008.10.537.  Google Scholar

[15]

Kunihiko Kaneko, Fractalization of torus,, Progr. Theoret. Phys., 71 (1984), 1112.  doi: 10.1143/PTP.71.1112.  Google Scholar

[16]

Gerhard Keller, A note on strange nonchaotic attractors,, Fund. Math., 151 (1996), 139.   Google Scholar

[17]

Ken-Ichi Inada, On a two-sector model of economic growth: Comments and a generalization,, The Review of Economic Studies, 30 (1963), 119.  doi: 10.2307/2295809.  Google Scholar

[18]

Awadhesh Prasad, Surendra Singh Negi and Ramakrishna Ramaswamy, Strange nonchaotic attractors,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291.  doi: 10.1142/S0218127401002195.  Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[5]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[6]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[7]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[8]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[9]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[10]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[13]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[14]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[15]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]