February  2012, 32(2): 605-617. doi: 10.3934/dcds.2012.32.605

On strange attractors in a class of pinched skew products

1. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona

Received  October 2010 Revised  July 2011 Published  September 2011

In this paper we construct strange attractors in a class of pinched skew product dynamical systems over homeomorphims on a compact metric space. We assume that maps between fibers satisfy Inada conditions and that the base space is a super-repeller (it is invariant and its vertical Lyapunov exponent is $+\infty$). In particular, we prove the existence of a measurable but non-continuous invariant graph, whose vertical Lyapunov exponent is negative. %We will refer to such an object as a strange attractor.
    Since the dynamics on the strange attractor is the one given by the base homeomorphism, we will say that it is a strange chaotic attractor or a strange non-chaotic attractor depending on the fact that the dynamics on the base is chaotic or non-chaotic. The results complement the paper by G. Keller on rigorous proofs of existence of strange non-chaotic attractors.
Citation: Àlex Haro. On strange attractors in a class of pinched skew products. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605
References:
[1]

Lluís Alsedà and Michał Misiurewicz, Attractors for unimodal quasiperiodically forced maps,, J. Difference Equ. Appl., 14 (2008), 1175. doi: 10.1080/10236190802332274. Google Scholar

[2]

Kristian Bjerklöv, Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations,, Ergodic Theory Dynam. Systems, 25 (2005), 1015. Google Scholar

[3]

Kristian Bjerklöv, SNA's in the quasi-periodic quadratic family,, Comm. Math. Phys., 286 (2009), 137. doi: 10.1007/s00220-008-0626-y. Google Scholar

[4]

Z. I. Bezhaeva and V. I. Oseledets, On an example of a "strange nonchaotic attractor'',, Funktsional. Anal. i Prilozhen., 30 (1996), 1. Google Scholar

[5]

Henk W. Broer, Carles Simó and Renato Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871. doi: 10.3934/dcdsb.2010.14.871. Google Scholar

[6]

Paul Glendinning, Global attractors of pinched skew products,, Dyn. Syst., 17 (2002), 287. doi: 10.1080/14689360210160878. Google Scholar

[7]

Celso Grebogi, Edward Ott, Steven Pelikan and James A. Yorke, Strange attractors that are not chaotic,, Phys. D, 13 (1984), 261. doi: 10.1016/0167-2789(84)90282-3. Google Scholar

[8]

Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension $2$,, Comment. Math. Helv., 58 (1983), 453. Google Scholar

[9]

Àlex Haro and Joaquim Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006). Google Scholar

[10]

À. Haro and C. Simó, To be or not to be an SNA: That is the question, 2005., Available from: \url{http://www.maia.ub.es/dsg/2005/0503haro.pdf}., (2005). Google Scholar

[11]

Tobias H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products,, Ergodic Theory Dynam. Systems, 27 (2007), 493. Google Scholar

[12]

Tobias H. Jäger, Strange non-chaotic attractors in quasiperiodically forced circle maps,, Comm. Math. Phys., 289 (2009), 253. doi: 10.1007/s00220-009-0753-0. Google Scholar

[13]

Tobias H. Jäger, The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations,, Mem. Amer. Math. Soc., 201 (2009). Google Scholar

[14]

Àngel Jorba and Joan Carles Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537. doi: 10.3934/dcdsb.2008.10.537. Google Scholar

[15]

Kunihiko Kaneko, Fractalization of torus,, Progr. Theoret. Phys., 71 (1984), 1112. doi: 10.1143/PTP.71.1112. Google Scholar

[16]

Gerhard Keller, A note on strange nonchaotic attractors,, Fund. Math., 151 (1996), 139. Google Scholar

[17]

Ken-Ichi Inada, On a two-sector model of economic growth: Comments and a generalization,, The Review of Economic Studies, 30 (1963), 119. doi: 10.2307/2295809. Google Scholar

[18]

Awadhesh Prasad, Surendra Singh Negi and Ramakrishna Ramaswamy, Strange nonchaotic attractors,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291. doi: 10.1142/S0218127401002195. Google Scholar

show all references

References:
[1]

Lluís Alsedà and Michał Misiurewicz, Attractors for unimodal quasiperiodically forced maps,, J. Difference Equ. Appl., 14 (2008), 1175. doi: 10.1080/10236190802332274. Google Scholar

[2]

Kristian Bjerklöv, Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations,, Ergodic Theory Dynam. Systems, 25 (2005), 1015. Google Scholar

[3]

Kristian Bjerklöv, SNA's in the quasi-periodic quadratic family,, Comm. Math. Phys., 286 (2009), 137. doi: 10.1007/s00220-008-0626-y. Google Scholar

[4]

Z. I. Bezhaeva and V. I. Oseledets, On an example of a "strange nonchaotic attractor'',, Funktsional. Anal. i Prilozhen., 30 (1996), 1. Google Scholar

[5]

Henk W. Broer, Carles Simó and Renato Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871. doi: 10.3934/dcdsb.2010.14.871. Google Scholar

[6]

Paul Glendinning, Global attractors of pinched skew products,, Dyn. Syst., 17 (2002), 287. doi: 10.1080/14689360210160878. Google Scholar

[7]

Celso Grebogi, Edward Ott, Steven Pelikan and James A. Yorke, Strange attractors that are not chaotic,, Phys. D, 13 (1984), 261. doi: 10.1016/0167-2789(84)90282-3. Google Scholar

[8]

Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension $2$,, Comment. Math. Helv., 58 (1983), 453. Google Scholar

[9]

Àlex Haro and Joaquim Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006). Google Scholar

[10]

À. Haro and C. Simó, To be or not to be an SNA: That is the question, 2005., Available from: \url{http://www.maia.ub.es/dsg/2005/0503haro.pdf}., (2005). Google Scholar

[11]

Tobias H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products,, Ergodic Theory Dynam. Systems, 27 (2007), 493. Google Scholar

[12]

Tobias H. Jäger, Strange non-chaotic attractors in quasiperiodically forced circle maps,, Comm. Math. Phys., 289 (2009), 253. doi: 10.1007/s00220-009-0753-0. Google Scholar

[13]

Tobias H. Jäger, The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations,, Mem. Amer. Math. Soc., 201 (2009). Google Scholar

[14]

Àngel Jorba and Joan Carles Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537. doi: 10.3934/dcdsb.2008.10.537. Google Scholar

[15]

Kunihiko Kaneko, Fractalization of torus,, Progr. Theoret. Phys., 71 (1984), 1112. doi: 10.1143/PTP.71.1112. Google Scholar

[16]

Gerhard Keller, A note on strange nonchaotic attractors,, Fund. Math., 151 (1996), 139. Google Scholar

[17]

Ken-Ichi Inada, On a two-sector model of economic growth: Comments and a generalization,, The Review of Economic Studies, 30 (1963), 119. doi: 10.2307/2295809. Google Scholar

[18]

Awadhesh Prasad, Surendra Singh Negi and Ramakrishna Ramaswamy, Strange nonchaotic attractors,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291. doi: 10.1142/S0218127401002195. Google Scholar

[1]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalizable Expanding Baker Maps: Coexistence of strange attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1651-1678. doi: 10.3934/dcds.2017068

[2]

Shin Kiriki, Yusuke Nishizawa, Teruhiko Soma. Heterodimensional tangencies on cycles leading to strange attractors. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 285-300. doi: 10.3934/dcds.2010.27.285

[3]

Hunseok Kang. Dynamics of local map of a discrete Brusselator model: eventually trapping regions and strange attractors. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 939-959. doi: 10.3934/dcds.2008.20.939

[4]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040

[5]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Persistent two-dimensional strange attractors for a two-parameter family of Expanding Baker Maps. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 657-670. doi: 10.3934/dcdsb.2018201

[6]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[7]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[8]

Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015

[9]

Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349

[10]

Roy Adler, Bruce Kitchens, Michael Shub. Errata to "Stably ergodic skew products". Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 456-456. doi: 10.3934/dcds.1999.5.456

[11]

Feng Rong. Non-algebraic attractors on $\mathbf{P}^k$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 977-989. doi: 10.3934/dcds.2012.32.977

[12]

Gábor Domokos, Domokos Szász. Ulam's scheme revisited: digital modeling of chaotic attractors via micro-perturbations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 859-876. doi: 10.3934/dcds.2003.9.859

[13]

Emile Franc Doungmo Goufo. Multi-directional and saturated chaotic attractors with many scrolls for fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 629-643. doi: 10.3934/dcdss.2020034

[14]

Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907

[15]

Jose S. Cánovas, Antonio Falcó. The set of periods for a class of skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 893-900. doi: 10.3934/dcds.2000.6.893

[16]

Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657

[17]

Viorel Nitica. Examples of topologically transitive skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 351-360. doi: 10.3934/dcds.2000.6.351

[18]

Jon Aaronson, Michael Bromberg, Nishant Chandgotia. Rational ergodicity of step function skew products. Journal of Modern Dynamics, 2018, 13: 1-42. doi: 10.3934/jmd.2018012

[19]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[20]

Zhicong Liu. SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1545-1562. doi: 10.3934/dcds.2013.33.1545

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]