\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On strange attractors in a class of pinched skew products

Abstract / Introduction Related Papers Cited by
  • In this paper we construct strange attractors in a class of pinched skew product dynamical systems over homeomorphims on a compact metric space. We assume that maps between fibers satisfy Inada conditions and that the base space is a super-repeller (it is invariant and its vertical Lyapunov exponent is $+\infty$). In particular, we prove the existence of a measurable but non-continuous invariant graph, whose vertical Lyapunov exponent is negative. %We will refer to such an object as a strange attractor.
        Since the dynamics on the strange attractor is the one given by the base homeomorphism, we will say that it is a strange chaotic attractor or a strange non-chaotic attractor depending on the fact that the dynamics on the base is chaotic or non-chaotic. The results complement the paper by G. Keller on rigorous proofs of existence of strange non-chaotic attractors.
    Mathematics Subject Classification: Primary: 37C60, 37C70; Secondary: 37B55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Lluís Alsedà and Michał Misiurewicz, Attractors for unimodal quasiperiodically forced maps, J. Difference Equ. Appl., 14 (2008), 1175-1196.doi: 10.1080/10236190802332274.

    [2]

    Kristian Bjerklöv, Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations, Ergodic Theory Dynam. Systems, 25 (2005), 1015-1045.

    [3]

    Kristian Bjerklöv, SNA's in the quasi-periodic quadratic family, Comm. Math. Phys., 286 (2009), 137-161.doi: 10.1007/s00220-008-0626-y.

    [4]

    Z. I. Bezhaeva and V. I. Oseledets, On an example of a "strange nonchaotic attractor'', Funktsional. Anal. i Prilozhen., 30 (1996), 1-9, 95.

    [5]

    Henk W. Broer, Carles Simó and Renato Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905.doi: 10.3934/dcdsb.2010.14.871.

    [6]

    Paul Glendinning, Global attractors of pinched skew products, Dyn. Syst., 17 (2002), 287-294.doi: 10.1080/14689360210160878.

    [7]

    Celso Grebogi, Edward Ott, Steven Pelikan and James A. Yorke, Strange attractors that are not chaotic, Phys. D, 13 (1984), 261-268.doi: 10.1016/0167-2789(84)90282-3.

    [8]

    Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension $2$, Comment. Math. Helv., 58 (1983), 453-502.

    [9]

    Àlex Haro and Joaquim Puig, Strange nonchaotic attractors in Harper maps, Chaos, 16 (2006), 033127, 7 pp.

    [10]

    À. Haro and C. Simó, To be or not to be an SNA: That is the question, 2005. Available from: http://www.maia.ub.es/dsg/2005/0503haro.pdf.

    [11]

    Tobias H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products, Ergodic Theory Dynam. Systems, 27 (2007), 493-510.

    [12]

    Tobias H. Jäger, Strange non-chaotic attractors in quasiperiodically forced circle maps, Comm. Math. Phys., 289 (2009), 253-289.doi: 10.1007/s00220-009-0753-0.

    [13]

    Tobias H. Jäger, The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations, Mem. Amer. Math. Soc., 201 (2009), vi+106 pp.

    [14]

    Àngel Jorba and Joan Carles Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.doi: 10.3934/dcdsb.2008.10.537.

    [15]

    Kunihiko Kaneko, Fractalization of torus, Progr. Theoret. Phys., 71 (1984), 1112-1115.doi: 10.1143/PTP.71.1112.

    [16]

    Gerhard Keller, A note on strange nonchaotic attractors, Fund. Math., 151 (1996), 139-148.

    [17]

    Ken-Ichi Inada, On a two-sector model of economic growth: Comments and a generalization, The Review of Economic Studies, 30 (1963), 119-127.doi: 10.2307/2295809.

    [18]

    Awadhesh Prasad, Surendra Singh Negi and Ramakrishna Ramaswamy, Strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291-309.doi: 10.1142/S0218127401002195.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return