-
Previous Article
Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid
- DCDS Home
- This Issue
-
Next Article
The periodic-parabolic logistic equation on $\mathbb{R}^N$
Symmetric interval identification systems of order three
1. | Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991, Russian Federation |
References:
[1] |
M. Bestvina and M. Feighn, Stable actions of groups on real trees, Invent. Math., 121 (1995), 287-321. |
[2] |
M. Bestvina, $\mathbb{R}$-trees in topology, geometry, and group theory, in "Handbook of Geometric Topology," North-Holland, Amsterdam, (2002), 55-91. |
[3] |
M. Boshernitzan and I. Kornfeld, Interval translation mappings, Ergodic Theory and Dynamical Systems, 15 (1995), 821-832.
doi: 10.1017/S0143385700009652. |
[4] |
H. Bruin and S. Troubetzkoy, The Gauss Map on a class of interval translation mappings, Israel J. Math, 137 (2003), 125-148.
doi: 10.1007/BF02785958. |
[5] |
I. Dynnikov, Interval identification systems and plane sections of 3-periodic surfaces, Proceedings of the Steklov Institute of Mathematics, 263 (2008), 65-77.
doi: 10.1134/S0081543808040068. |
[6] |
I. Dynnikov and B. Wiest, On the complexity of braids, J. Eur. Math. Soc., 9 (2007), 801-840.
doi: 10.4171/JEMS/98. |
[7] |
I. Dynnikov, Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples, in "Solitons, Geometry, and Topology: On the Crossroad" AMS Transl., Ser. 2, 179, Amer. Math. Soc., Providence, RI, (1997), 45-73. |
[8] |
D. Gaboriau, Dynamique des systèmes d'isométries: Sur les bouts des orbits, Invent. Math., 126 (1996), 297-318.
doi: 10.1007/s002220050101. |
[9] |
G. Levitt, La dynamique des pseudogroupes de rotations, Invent. Math., 113 (1993), 633-670.
doi: 10.1007/BF01244321. |
[10] |
S. P. Novikov, The Hamiltonian formalism and many-valued analogue of Morse theory, Usp. Mat. Nauk, 37 (1982), 3-49. |
show all references
References:
[1] |
M. Bestvina and M. Feighn, Stable actions of groups on real trees, Invent. Math., 121 (1995), 287-321. |
[2] |
M. Bestvina, $\mathbb{R}$-trees in topology, geometry, and group theory, in "Handbook of Geometric Topology," North-Holland, Amsterdam, (2002), 55-91. |
[3] |
M. Boshernitzan and I. Kornfeld, Interval translation mappings, Ergodic Theory and Dynamical Systems, 15 (1995), 821-832.
doi: 10.1017/S0143385700009652. |
[4] |
H. Bruin and S. Troubetzkoy, The Gauss Map on a class of interval translation mappings, Israel J. Math, 137 (2003), 125-148.
doi: 10.1007/BF02785958. |
[5] |
I. Dynnikov, Interval identification systems and plane sections of 3-periodic surfaces, Proceedings of the Steklov Institute of Mathematics, 263 (2008), 65-77.
doi: 10.1134/S0081543808040068. |
[6] |
I. Dynnikov and B. Wiest, On the complexity of braids, J. Eur. Math. Soc., 9 (2007), 801-840.
doi: 10.4171/JEMS/98. |
[7] |
I. Dynnikov, Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples, in "Solitons, Geometry, and Topology: On the Crossroad" AMS Transl., Ser. 2, 179, Amer. Math. Soc., Providence, RI, (1997), 45-73. |
[8] |
D. Gaboriau, Dynamique des systèmes d'isométries: Sur les bouts des orbits, Invent. Math., 126 (1996), 297-318.
doi: 10.1007/s002220050101. |
[9] |
G. Levitt, La dynamique des pseudogroupes de rotations, Invent. Math., 113 (1993), 633-670.
doi: 10.1007/BF01244321. |
[10] |
S. P. Novikov, The Hamiltonian formalism and many-valued analogue of Morse theory, Usp. Mat. Nauk, 37 (1982), 3-49. |
[1] |
Sébastien Labbé. Rauzy induction of polygon partitions and toral $ \mathbb{Z}^2 $-rotations. Journal of Modern Dynamics, 2021, 17: 481-528. doi: 10.3934/jmd.2021017 |
[2] |
Tayel Dabbous. Identification for systems governed by nonlinear interval differential equations. Journal of Industrial and Management Optimization, 2012, 8 (3) : 765-780. doi: 10.3934/jimo.2012.8.765 |
[3] |
Marcelo F. Furtado, Liliane A. Maia, Elves A. B. Silva. Systems with coupling in $mathbb(R)^N$ class of noncoercive potentials. Conference Publications, 2003, 2003 (Special) : 295-304. doi: 10.3934/proc.2003.2003.295 |
[4] |
Victoria Sadovskaya. Cohomology of $GL(2,\mathbb{R})$-valued cocycles over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2085-2104. doi: 10.3934/dcds.2013.33.2085 |
[5] |
Yuxia Guo, Bo Li. Nonexistence of positive solutions for polyharmonic systems in $\mathbb{R}^N_+$. Communications on Pure and Applied Analysis, 2016, 15 (3) : 701-713. doi: 10.3934/cpaa.2016.15.701 |
[6] |
Armengol Gasull, Héctor Giacomini, Maite Grau. On the stability of periodic orbits for differential systems in $\mathbb{R}^n$. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 495-509. doi: 10.3934/dcdsb.2008.10.495 |
[7] |
Marcello Lucia, Guido Sweers. Nondegeneracy of solutions for a class of cooperative systems on $ \mathbb{R}^n $. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4177-4193. doi: 10.3934/cpaa.2021152 |
[8] |
Edcarlos D. Silva, José Carlos de Albuquerque, Uberlandio Severo. On a class of linearly coupled systems on $ \mathbb{R}^N $ involving asymptotically linear terms. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3089-3101. doi: 10.3934/cpaa.2019138 |
[9] |
Dongsheng Kang, Fen Yang. Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4247-4263. doi: 10.3934/dcds.2012.32.4247 |
[10] |
Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537 |
[11] |
Megan Griffin-Pickering, Mikaela Iacobelli. Global strong solutions in $ {\mathbb{R}}^3 $ for ionic Vlasov-Poisson systems. Kinetic and Related Models, 2021, 14 (4) : 571-597. doi: 10.3934/krm.2021016 |
[12] |
Xin Yang, Bing-Yu Zhang. Local well-posedness of the coupled KdV-KdV systems on $ \mathbb{R} $. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022002 |
[13] |
Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079 |
[14] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[15] |
Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005 |
[16] |
Giuseppina Barletta, Gabriele Bonanno. Multiplicity results to elliptic problems in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 715-727. doi: 10.3934/dcdss.2012.5.715 |
[17] |
Fernando Jiménez, Jürgen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb{R}^n$. Journal of Geometric Mechanics, 2015, 7 (1) : 43-80. doi: 10.3934/jgm.2015.7.43 |
[18] |
J. L. Barbosa, L. Birbrair, M. do Carmo, A. Fernandes. Globally subanalytic CMC surfaces in $\mathbb{R}^3$. Electronic Research Announcements, 2014, 21: 186-192. doi: 10.3934/era.2014.21.186 |
[19] |
Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105 |
[20] |
Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]