February  2012, 32(2): 643-656. doi: 10.3934/dcds.2012.32.643

Symmetric interval identification systems of order three

1. 

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991, Russian Federation

Received  November 2010 Revised  June 2011 Published  September 2011

In the present paper we study symmetric interval identification systems of order three. We prove that the Rauzy induction preserves symmetry: for any symmetric interval identification system of order 3 after finitely many iterations of the Rauzy induction we always obtain a symmetric system. We also provide an example of symmetric interval identification system of thin type.
Citation: Alexandra Skripchenko. Symmetric interval identification systems of order three. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 643-656. doi: 10.3934/dcds.2012.32.643
References:
[1]

M. Bestvina and M. Feighn, Stable actions of groups on real trees,, Invent. Math., 121 (1995), 287.   Google Scholar

[2]

M. Bestvina, $\mathbbR$-trees in topology, geometry, and group theory,, in, (2002), 55.   Google Scholar

[3]

M. Boshernitzan and I. Kornfeld, Interval translation mappings,, Ergodic Theory and Dynamical Systems, 15 (1995), 821.  doi: 10.1017/S0143385700009652.  Google Scholar

[4]

H. Bruin and S. Troubetzkoy, The Gauss Map on a class of interval translation mappings,, Israel J. Math, 137 (2003), 125.  doi: 10.1007/BF02785958.  Google Scholar

[5]

I. Dynnikov, Interval identification systems and plane sections of 3-periodic surfaces,, Proceedings of the Steklov Institute of Mathematics, 263 (2008), 65.  doi: 10.1134/S0081543808040068.  Google Scholar

[6]

I. Dynnikov and B. Wiest, On the complexity of braids,, J. Eur. Math. Soc., 9 (2007), 801.  doi: 10.4171/JEMS/98.  Google Scholar

[7]

I. Dynnikov, Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples,, in, 179 (1997), 45.   Google Scholar

[8]

D. Gaboriau, Dynamique des systèmes d'isométries: Sur les bouts des orbits,, Invent. Math., 126 (1996), 297.  doi: 10.1007/s002220050101.  Google Scholar

[9]

G. Levitt, La dynamique des pseudogroupes de rotations,, Invent. Math., 113 (1993), 633.  doi: 10.1007/BF01244321.  Google Scholar

[10]

S. P. Novikov, The Hamiltonian formalism and many-valued analogue of Morse theory,, Usp. Mat. Nauk, 37 (1982), 3.   Google Scholar

show all references

References:
[1]

M. Bestvina and M. Feighn, Stable actions of groups on real trees,, Invent. Math., 121 (1995), 287.   Google Scholar

[2]

M. Bestvina, $\mathbbR$-trees in topology, geometry, and group theory,, in, (2002), 55.   Google Scholar

[3]

M. Boshernitzan and I. Kornfeld, Interval translation mappings,, Ergodic Theory and Dynamical Systems, 15 (1995), 821.  doi: 10.1017/S0143385700009652.  Google Scholar

[4]

H. Bruin and S. Troubetzkoy, The Gauss Map on a class of interval translation mappings,, Israel J. Math, 137 (2003), 125.  doi: 10.1007/BF02785958.  Google Scholar

[5]

I. Dynnikov, Interval identification systems and plane sections of 3-periodic surfaces,, Proceedings of the Steklov Institute of Mathematics, 263 (2008), 65.  doi: 10.1134/S0081543808040068.  Google Scholar

[6]

I. Dynnikov and B. Wiest, On the complexity of braids,, J. Eur. Math. Soc., 9 (2007), 801.  doi: 10.4171/JEMS/98.  Google Scholar

[7]

I. Dynnikov, Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples,, in, 179 (1997), 45.   Google Scholar

[8]

D. Gaboriau, Dynamique des systèmes d'isométries: Sur les bouts des orbits,, Invent. Math., 126 (1996), 297.  doi: 10.1007/s002220050101.  Google Scholar

[9]

G. Levitt, La dynamique des pseudogroupes de rotations,, Invent. Math., 113 (1993), 633.  doi: 10.1007/BF01244321.  Google Scholar

[10]

S. P. Novikov, The Hamiltonian formalism and many-valued analogue of Morse theory,, Usp. Mat. Nauk, 37 (1982), 3.   Google Scholar

[1]

Tayel Dabbous. Identification for systems governed by nonlinear interval differential equations. Journal of Industrial & Management Optimization, 2012, 8 (3) : 765-780. doi: 10.3934/jimo.2012.8.765

[2]

Marcelo F. Furtado, Liliane A. Maia, Elves A. B. Silva. Systems with coupling in $mathbb(R)^N$ class of noncoercive potentials. Conference Publications, 2003, 2003 (Special) : 295-304. doi: 10.3934/proc.2003.2003.295

[3]

Victoria Sadovskaya. Cohomology of $GL(2,\mathbb{R})$-valued cocycles over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2085-2104. doi: 10.3934/dcds.2013.33.2085

[4]

Yuxia Guo, Bo Li. Nonexistence of positive solutions for polyharmonic systems in $\mathbb{R}^N_+$. Communications on Pure & Applied Analysis, 2016, 15 (3) : 701-713. doi: 10.3934/cpaa.2016.15.701

[5]

Armengol Gasull, Héctor Giacomini, Maite Grau. On the stability of periodic orbits for differential systems in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 495-509. doi: 10.3934/dcdsb.2008.10.495

[6]

Dongsheng Kang, Fen Yang. Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4247-4263. doi: 10.3934/dcds.2012.32.4247

[7]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[8]

Edcarlos D. Silva, José Carlos de Albuquerque, Uberlandio Severo. On a class of linearly coupled systems on $ \mathbb{R}^N $ involving asymptotically linear terms. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3089-3101. doi: 10.3934/cpaa.2019138

[9]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[10]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[11]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[12]

Giuseppina Barletta, Gabriele Bonanno. Multiplicity results to elliptic problems in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 715-727. doi: 10.3934/dcdss.2012.5.715

[13]

J. L. Barbosa, L. Birbrair, M. do Carmo, A. Fernandes. Globally subanalytic CMC surfaces in $\mathbb{R}^3$. Electronic Research Announcements, 2014, 21: 186-192. doi: 10.3934/era.2014.21.186

[14]

Fernando Jiménez, Jürgen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb{R}^n$. Journal of Geometric Mechanics, 2015, 7 (1) : 43-80. doi: 10.3934/jgm.2015.7.43

[15]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105

[16]

Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016

[17]

Jan Prüss, Gieri Simonett. On the manifold of closed hypersurfaces in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5407-5428. doi: 10.3934/dcds.2013.33.5407

[18]

Danny Calegari. Geometry and topology of $\mathbb{R}$-covered foliations. Electronic Research Announcements, 2000, 6: 31-39.

[19]

Jiří Minarčík, Masato Kimura, Michal Beneš. Comparing motion of curves and hypersurfaces in $ \mathbb{R}^m $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4815-4826. doi: 10.3934/dcdsb.2019032

[20]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]