-
Previous Article
Closed trajectories on symmetric convex Hamiltonian energy surfaces
- DCDS Home
- This Issue
-
Next Article
Symmetric interval identification systems of order three
Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid
1. | College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China |
3. | Faculty of Science, Xi'an Jiaotong University, Xi'an 710049 |
References:
[1] |
Y. Agranovich and P. Sobolevskiĭ, Investigation of a mathematical model of a viscoelastic fluid, (Russian), 1989 (): 3.
|
[2] |
Y. Agranovich and P. Sobolevskiĭ, Motion of non-linear visco-elastic fluid,, Nonlinear Anal., 32 (1998), 755.
doi: 10.1016/S0362-546X(97)00519-1. |
[3] |
M. Akhmatov and A. Oskolkov, On convergence difference schemes for the equations of motion of an Oldroyd fluid,, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov., 159 (1987), 143.
doi: 10.1007/BF01305224. |
[4] |
W. Allegretto, Y. P. Lin and A. H. Zhou, Long-time stability of finite element approximations for parabolic equations with memory,, Numer. Methods Partial Differential Equations, 15 (1999), 333.
doi: 10.1002/(SICI)1098-2426(199905)15:3<333::AID-NUM5>3.0.CO;2-0. |
[5] |
G. Araújo, S. Menezes and A. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, J. Differential Equations, 2009 ().
|
[6] |
R. Bird, R. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids. Vol. 1, Fluid Mechanics,", John Wiley & Sons, (1977). Google Scholar |
[7] |
J. Cannon, R. Ewing, Y. N. He and Y. P. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations,, Int. J. Eng. Sci., 37 (1999), 1643.
doi: 10.1016/S0020-7225(98)00142-6. |
[8] |
P. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, 4,, North-Holland Publishing Co., (1978).
|
[9] |
V. Girault and P. Raviart, "Finite Element Approximation of the Navier-Stokes Equations,", Springer-Verlag, (1979).
doi: 10.1007/BFb0063447. |
[10] |
D. Goswami and A. Pani, A priori error estimates for semidiscrete finite element approximations to equations of motion arising in Oldroyd fluids of order one,, Int. J. Numer. Anal. Model., 8 (2011), 324.
|
[11] |
Y. N. He and Y. Li, Asymptotic behavior of linearized viscoelastic flow problem,, Discrete Contin. Dyn. Syst.-Ser. B, 10 (2008), 843.
|
[12] |
Y. N. He and K. T. Li, Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem,, Numer. Math., 98 (2004), 647.
doi: 10.1007/s00211-004-0532-y. |
[13] |
Y. N. He, Y. P. Lin, S. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state,, Adv. Differential Equations, 7 (2002), 717.
|
[14] |
Y. N. He, Y. P. Lin, S. Shen, W. W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem,, J. Comput. Appl. Math., 155 (2003), 201.
|
[15] |
J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem part IV: Error analysis for second-order time discretization,, SIAM J. Numer. Anal., 27 (1990), 353.
doi: 10.1137/0727022. |
[16] |
D. Joseph, "Fluid Dynamics of Viscoelastic Liquids,", Applied Mathematical Sciences, 84 (1990).
|
[17] |
A. Kotsiolis and A. Oskolkov, Initial-boundary value problems for equations of slightly compressible Jeffreys-Oldroyd fluids,, Zap. Nauchn. Semin. POMI, 208 (1993), 200.
doi: 10.1007/BF02362429. |
[18] |
J. Oldroyd, On the formulation of the rheological equations of state,, Proc. Roy. Soc. London. Ser. A., 200 (1950), 523.
|
[19] |
A. Oskolkov, Initial boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids, Contributions to "Boundary Value Problems of Mathematical Physics"(ed. J. Schulenberger),, Proc. Steklov Inst. Math., 179 (1989), 137. Google Scholar |
[20] |
A. Oskolkov, The penalty method for equations of viscoelastic media,, Zap. Nauchn. Semin. POMI, 224 (1995), 267.
doi: 10.1007/BF02364990. |
[21] |
A. Pani and J. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model,, IMA J. Numer. Anal., 25 (2005), 750.
doi: 10.1093/imanum/dri016. |
[22] |
A. Pani, J. Yuan and P. Damázio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one,, SIAM J. Numer. Anal., 44 (2006), 804.
doi: 10.1137/S0036142903428967. |
[23] |
P. Sobolevskiĭ, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model),, Differential Integral Equations, 7 (1994), 1597.
|
[24] |
P. Sobolevskiĭ, Asymptotic of stable viscoelastic fluid motion (Oldroyd's mathematical model),, Math. Nachr., 177 (1996), 281.
doi: 10.1002/mana.19961770116. |
[25] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", Third edition, 2 (1984).
|
[26] |
R. Temam and X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain,, Asymptot. Anal., 14 (1997), 293.
|
[27] |
R. Temam and X. Wang, Boundary layers asscociated with incompressible Navier-Stokes equations: The noncharacteristic boundary case,, J. Differential Equations, 179 (2002), 647.
doi: 10.1006/jdeq.2001.4038. |
[28] |
K. Wang, Y. N. He and X. L. Feng, On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization,, Appl. Math. Model., 34 (2010), 4089.
doi: 10.1016/j.apm.2010.04.008. |
[29] |
K. Wang, Y. N. He and Y. Q. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations,, Discrete Contin. Dyn. Syst.-Ser. B, 13 (2010), 665.
|
[30] |
K. Wang, Y. Q. Shang and R. Zhao, Optimal error estimates of the penalty method for the linearized viscoelastic flows,, Int. J. Comput. Math., 87 (2010), 3236.
doi: 10.1080/00207160902980500. |
show all references
References:
[1] |
Y. Agranovich and P. Sobolevskiĭ, Investigation of a mathematical model of a viscoelastic fluid, (Russian), 1989 (): 3.
|
[2] |
Y. Agranovich and P. Sobolevskiĭ, Motion of non-linear visco-elastic fluid,, Nonlinear Anal., 32 (1998), 755.
doi: 10.1016/S0362-546X(97)00519-1. |
[3] |
M. Akhmatov and A. Oskolkov, On convergence difference schemes for the equations of motion of an Oldroyd fluid,, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov., 159 (1987), 143.
doi: 10.1007/BF01305224. |
[4] |
W. Allegretto, Y. P. Lin and A. H. Zhou, Long-time stability of finite element approximations for parabolic equations with memory,, Numer. Methods Partial Differential Equations, 15 (1999), 333.
doi: 10.1002/(SICI)1098-2426(199905)15:3<333::AID-NUM5>3.0.CO;2-0. |
[5] |
G. Araújo, S. Menezes and A. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, J. Differential Equations, 2009 ().
|
[6] |
R. Bird, R. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids. Vol. 1, Fluid Mechanics,", John Wiley & Sons, (1977). Google Scholar |
[7] |
J. Cannon, R. Ewing, Y. N. He and Y. P. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations,, Int. J. Eng. Sci., 37 (1999), 1643.
doi: 10.1016/S0020-7225(98)00142-6. |
[8] |
P. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, 4,, North-Holland Publishing Co., (1978).
|
[9] |
V. Girault and P. Raviart, "Finite Element Approximation of the Navier-Stokes Equations,", Springer-Verlag, (1979).
doi: 10.1007/BFb0063447. |
[10] |
D. Goswami and A. Pani, A priori error estimates for semidiscrete finite element approximations to equations of motion arising in Oldroyd fluids of order one,, Int. J. Numer. Anal. Model., 8 (2011), 324.
|
[11] |
Y. N. He and Y. Li, Asymptotic behavior of linearized viscoelastic flow problem,, Discrete Contin. Dyn. Syst.-Ser. B, 10 (2008), 843.
|
[12] |
Y. N. He and K. T. Li, Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem,, Numer. Math., 98 (2004), 647.
doi: 10.1007/s00211-004-0532-y. |
[13] |
Y. N. He, Y. P. Lin, S. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state,, Adv. Differential Equations, 7 (2002), 717.
|
[14] |
Y. N. He, Y. P. Lin, S. Shen, W. W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem,, J. Comput. Appl. Math., 155 (2003), 201.
|
[15] |
J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem part IV: Error analysis for second-order time discretization,, SIAM J. Numer. Anal., 27 (1990), 353.
doi: 10.1137/0727022. |
[16] |
D. Joseph, "Fluid Dynamics of Viscoelastic Liquids,", Applied Mathematical Sciences, 84 (1990).
|
[17] |
A. Kotsiolis and A. Oskolkov, Initial-boundary value problems for equations of slightly compressible Jeffreys-Oldroyd fluids,, Zap. Nauchn. Semin. POMI, 208 (1993), 200.
doi: 10.1007/BF02362429. |
[18] |
J. Oldroyd, On the formulation of the rheological equations of state,, Proc. Roy. Soc. London. Ser. A., 200 (1950), 523.
|
[19] |
A. Oskolkov, Initial boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids, Contributions to "Boundary Value Problems of Mathematical Physics"(ed. J. Schulenberger),, Proc. Steklov Inst. Math., 179 (1989), 137. Google Scholar |
[20] |
A. Oskolkov, The penalty method for equations of viscoelastic media,, Zap. Nauchn. Semin. POMI, 224 (1995), 267.
doi: 10.1007/BF02364990. |
[21] |
A. Pani and J. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model,, IMA J. Numer. Anal., 25 (2005), 750.
doi: 10.1093/imanum/dri016. |
[22] |
A. Pani, J. Yuan and P. Damázio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one,, SIAM J. Numer. Anal., 44 (2006), 804.
doi: 10.1137/S0036142903428967. |
[23] |
P. Sobolevskiĭ, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model),, Differential Integral Equations, 7 (1994), 1597.
|
[24] |
P. Sobolevskiĭ, Asymptotic of stable viscoelastic fluid motion (Oldroyd's mathematical model),, Math. Nachr., 177 (1996), 281.
doi: 10.1002/mana.19961770116. |
[25] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", Third edition, 2 (1984).
|
[26] |
R. Temam and X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain,, Asymptot. Anal., 14 (1997), 293.
|
[27] |
R. Temam and X. Wang, Boundary layers asscociated with incompressible Navier-Stokes equations: The noncharacteristic boundary case,, J. Differential Equations, 179 (2002), 647.
doi: 10.1006/jdeq.2001.4038. |
[28] |
K. Wang, Y. N. He and X. L. Feng, On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization,, Appl. Math. Model., 34 (2010), 4089.
doi: 10.1016/j.apm.2010.04.008. |
[29] |
K. Wang, Y. N. He and Y. Q. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations,, Discrete Contin. Dyn. Syst.-Ser. B, 13 (2010), 665.
|
[30] |
K. Wang, Y. Q. Shang and R. Zhao, Optimal error estimates of the penalty method for the linearized viscoelastic flows,, Int. J. Comput. Math., 87 (2010), 3236.
doi: 10.1080/00207160902980500. |
[1] |
Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 |
[2] |
Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997 |
[3] |
Anhui Gu, Boling Guo, Bixiang Wang. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020020 |
[4] |
Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 |
[5] |
Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263 |
[6] |
G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123 |
[7] |
Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008 |
[8] |
Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052 |
[9] |
Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055 |
[10] |
Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437 |
[11] |
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 |
[12] |
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045 |
[13] |
Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079 |
[14] |
Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427 |
[15] |
Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509 |
[16] |
Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245 |
[17] |
Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243 |
[18] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
[19] |
Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843 |
[20] |
Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]