-
Previous Article
Closed trajectories on symmetric convex Hamiltonian energy surfaces
- DCDS Home
- This Issue
-
Next Article
Symmetric interval identification systems of order three
Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid
1. | College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China |
3. | Faculty of Science, Xi'an Jiaotong University, Xi'an 710049 |
References:
[1] |
Y. Agranovich and P. Sobolevskiĭ, Investigation of a mathematical model of a viscoelastic fluid (Russian), Dokl. Akad. Nauk Ukrain. SSR Ser. A, 1989, 3-6, 86. |
[2] |
Y. Agranovich and P. Sobolevskiĭ, Motion of non-linear visco-elastic fluid, Nonlinear Anal., 32 (1998), 755-760.
doi: 10.1016/S0362-546X(97)00519-1. |
[3] |
M. Akhmatov and A. Oskolkov, On convergence difference schemes for the equations of motion of an Oldroyd fluid, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov., 159 (1987), Chisl. Metody i Voprosy Organiz. Vychisl. 8, 143-152, 179, translation in J. Soviet. Math., 47 (1989), 2926-2933.
doi: 10.1007/BF01305224. |
[4] |
W. Allegretto, Y. P. Lin and A. H. Zhou, Long-time stability of finite element approximations for parabolic equations with memory, Numer. Methods Partial Differential Equations, 15 (1999), 333-354.
doi: 10.1002/(SICI)1098-2426(199905)15:3<333::AID-NUM5>3.0.CO;2-0. |
[5] |
G. Araújo, S. Menezes and A. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids, J. Differential Equations, 2009, 16 pp. |
[6] |
R. Bird, R. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids. Vol. 1, Fluid Mechanics," John Wiley & Sons, New York, 1977. |
[7] |
J. Cannon, R. Ewing, Y. N. He and Y. P. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations, Int. J. Eng. Sci., 37 (1999), 1643-1662.
doi: 10.1016/S0020-7225(98)00142-6. |
[8] |
P. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[9] |
V. Girault and P. Raviart, "Finite Element Approximation of the Navier-Stokes Equations," Springer-Verlag, Berlin, 1979.
doi: 10.1007/BFb0063447. |
[10] |
D. Goswami and A. Pani, A priori error estimates for semidiscrete finite element approximations to equations of motion arising in Oldroyd fluids of order one, Int. J. Numer. Anal. Model., 8 (2011), 324-352. |
[11] |
Y. N. He and Y. Li, Asymptotic behavior of linearized viscoelastic flow problem, Discrete Contin. Dyn. Syst.-Ser. B, 10 (2008), 843-856. |
[12] |
Y. N. He and K. T. Li, Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem, Numer. Math., 98 (2004), 647-673.
doi: 10.1007/s00211-004-0532-y. |
[13] |
Y. N. He, Y. P. Lin, S. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state, Adv. Differential Equations, 7 (2002), 717-742. |
[14] |
Y. N. He, Y. P. Lin, S. Shen, W. W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem, J. Comput. Appl. Math., 155 (2003), 201-222. |
[15] |
J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem part IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022. |
[16] |
D. Joseph, "Fluid Dynamics of Viscoelastic Liquids," Applied Mathematical Sciences, 84, Springer-Verlag, New York, 1990. |
[17] |
A. Kotsiolis and A. Oskolkov, Initial-boundary value problems for equations of slightly compressible Jeffreys-Oldroyd fluids, Zap. Nauchn. Semin. POMI, 208 (1993), 200-218, 223, translation in J. Math. Sci., 81 (1996), 2578-2588.
doi: 10.1007/BF02362429. |
[18] |
J. Oldroyd, On the formulation of the rheological equations of state, Proc. Roy. Soc. London. Ser. A., 200 (1950), 523-541. |
[19] |
A. Oskolkov, Initial boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids, Contributions to "Boundary Value Problems of Mathematical Physics"(ed. J. Schulenberger), Proc. Steklov Inst. Math., 179 (1989), 137-182. |
[20] |
A. Oskolkov, The penalty method for equations of viscoelastic media, Zap. Nauchn. Semin. POMI, 224 (1995), 267-278, 340-341, translation in J. Math. Sci. (New York), 88 (1998), 283-291.
doi: 10.1007/BF02364990. |
[21] |
A. Pani and J. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model, IMA J. Numer. Anal., 25 (2005), 750-782.
doi: 10.1093/imanum/dri016. |
[22] |
A. Pani, J. Yuan and P. Damázio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one, SIAM J. Numer. Anal., 44 (2006), 804-825.
doi: 10.1137/S0036142903428967. |
[23] |
P. Sobolevskiĭ, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model), Differential Integral Equations, 7 (1994), 1597-1612. |
[24] |
P. Sobolevskiĭ, Asymptotic of stable viscoelastic fluid motion (Oldroyd's mathematical model), Math. Nachr., 177 (1996), 281-305.
doi: 10.1002/mana.19961770116. |
[25] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," Third edition, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984. |
[26] |
R. Temam and X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain, Asymptot. Anal., 14 (1997), 293-321. |
[27] |
R. Temam and X. Wang, Boundary layers asscociated with incompressible Navier-Stokes equations: The noncharacteristic boundary case, J. Differential Equations, 179 (2002), 647-686.
doi: 10.1006/jdeq.2001.4038. |
[28] |
K. Wang, Y. N. He and X. L. Feng, On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization, Appl. Math. Model., 34 (2010), 4089-4105.
doi: 10.1016/j.apm.2010.04.008. |
[29] |
K. Wang, Y. N. He and Y. Q. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations, Discrete Contin. Dyn. Syst.-Ser. B, 13 (2010), 665-684. |
[30] |
K. Wang, Y. Q. Shang and R. Zhao, Optimal error estimates of the penalty method for the linearized viscoelastic flows, Int. J. Comput. Math., 87 (2010), 3236-3253.
doi: 10.1080/00207160902980500. |
show all references
References:
[1] |
Y. Agranovich and P. Sobolevskiĭ, Investigation of a mathematical model of a viscoelastic fluid (Russian), Dokl. Akad. Nauk Ukrain. SSR Ser. A, 1989, 3-6, 86. |
[2] |
Y. Agranovich and P. Sobolevskiĭ, Motion of non-linear visco-elastic fluid, Nonlinear Anal., 32 (1998), 755-760.
doi: 10.1016/S0362-546X(97)00519-1. |
[3] |
M. Akhmatov and A. Oskolkov, On convergence difference schemes for the equations of motion of an Oldroyd fluid, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov., 159 (1987), Chisl. Metody i Voprosy Organiz. Vychisl. 8, 143-152, 179, translation in J. Soviet. Math., 47 (1989), 2926-2933.
doi: 10.1007/BF01305224. |
[4] |
W. Allegretto, Y. P. Lin and A. H. Zhou, Long-time stability of finite element approximations for parabolic equations with memory, Numer. Methods Partial Differential Equations, 15 (1999), 333-354.
doi: 10.1002/(SICI)1098-2426(199905)15:3<333::AID-NUM5>3.0.CO;2-0. |
[5] |
G. Araújo, S. Menezes and A. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids, J. Differential Equations, 2009, 16 pp. |
[6] |
R. Bird, R. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids. Vol. 1, Fluid Mechanics," John Wiley & Sons, New York, 1977. |
[7] |
J. Cannon, R. Ewing, Y. N. He and Y. P. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations, Int. J. Eng. Sci., 37 (1999), 1643-1662.
doi: 10.1016/S0020-7225(98)00142-6. |
[8] |
P. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[9] |
V. Girault and P. Raviart, "Finite Element Approximation of the Navier-Stokes Equations," Springer-Verlag, Berlin, 1979.
doi: 10.1007/BFb0063447. |
[10] |
D. Goswami and A. Pani, A priori error estimates for semidiscrete finite element approximations to equations of motion arising in Oldroyd fluids of order one, Int. J. Numer. Anal. Model., 8 (2011), 324-352. |
[11] |
Y. N. He and Y. Li, Asymptotic behavior of linearized viscoelastic flow problem, Discrete Contin. Dyn. Syst.-Ser. B, 10 (2008), 843-856. |
[12] |
Y. N. He and K. T. Li, Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem, Numer. Math., 98 (2004), 647-673.
doi: 10.1007/s00211-004-0532-y. |
[13] |
Y. N. He, Y. P. Lin, S. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state, Adv. Differential Equations, 7 (2002), 717-742. |
[14] |
Y. N. He, Y. P. Lin, S. Shen, W. W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem, J. Comput. Appl. Math., 155 (2003), 201-222. |
[15] |
J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem part IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384.
doi: 10.1137/0727022. |
[16] |
D. Joseph, "Fluid Dynamics of Viscoelastic Liquids," Applied Mathematical Sciences, 84, Springer-Verlag, New York, 1990. |
[17] |
A. Kotsiolis and A. Oskolkov, Initial-boundary value problems for equations of slightly compressible Jeffreys-Oldroyd fluids, Zap. Nauchn. Semin. POMI, 208 (1993), 200-218, 223, translation in J. Math. Sci., 81 (1996), 2578-2588.
doi: 10.1007/BF02362429. |
[18] |
J. Oldroyd, On the formulation of the rheological equations of state, Proc. Roy. Soc. London. Ser. A., 200 (1950), 523-541. |
[19] |
A. Oskolkov, Initial boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids, Contributions to "Boundary Value Problems of Mathematical Physics"(ed. J. Schulenberger), Proc. Steklov Inst. Math., 179 (1989), 137-182. |
[20] |
A. Oskolkov, The penalty method for equations of viscoelastic media, Zap. Nauchn. Semin. POMI, 224 (1995), 267-278, 340-341, translation in J. Math. Sci. (New York), 88 (1998), 283-291.
doi: 10.1007/BF02364990. |
[21] |
A. Pani and J. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model, IMA J. Numer. Anal., 25 (2005), 750-782.
doi: 10.1093/imanum/dri016. |
[22] |
A. Pani, J. Yuan and P. Damázio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one, SIAM J. Numer. Anal., 44 (2006), 804-825.
doi: 10.1137/S0036142903428967. |
[23] |
P. Sobolevskiĭ, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model), Differential Integral Equations, 7 (1994), 1597-1612. |
[24] |
P. Sobolevskiĭ, Asymptotic of stable viscoelastic fluid motion (Oldroyd's mathematical model), Math. Nachr., 177 (1996), 281-305.
doi: 10.1002/mana.19961770116. |
[25] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," Third edition, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984. |
[26] |
R. Temam and X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain, Asymptot. Anal., 14 (1997), 293-321. |
[27] |
R. Temam and X. Wang, Boundary layers asscociated with incompressible Navier-Stokes equations: The noncharacteristic boundary case, J. Differential Equations, 179 (2002), 647-686.
doi: 10.1006/jdeq.2001.4038. |
[28] |
K. Wang, Y. N. He and X. L. Feng, On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization, Appl. Math. Model., 34 (2010), 4089-4105.
doi: 10.1016/j.apm.2010.04.008. |
[29] |
K. Wang, Y. N. He and Y. Q. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations, Discrete Contin. Dyn. Syst.-Ser. B, 13 (2010), 665-684. |
[30] |
K. Wang, Y. Q. Shang and R. Zhao, Optimal error estimates of the penalty method for the linearized viscoelastic flows, Int. J. Comput. Math., 87 (2010), 3236-3253.
doi: 10.1080/00207160902980500. |
[1] |
Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 |
[2] |
Oscar Jarrín, Manuel Fernando Cortez. On the long-time behavior for a damped Navier-Stokes-Bardina model. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3661-3707. doi: 10.3934/dcds.2022028 |
[3] |
Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997 |
[4] |
Anhui Gu, Boling Guo, Bixiang Wang. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2495-2532. doi: 10.3934/dcdsb.2020020 |
[5] |
Yang Liu. Long-time behavior of a class of viscoelastic plate equations. Electronic Research Archive, 2020, 28 (1) : 311-326. doi: 10.3934/era.2020018 |
[6] |
Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 |
[7] |
Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263 |
[8] |
Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008 |
[9] |
G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123 |
[10] |
Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052 |
[11] |
Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055 |
[12] |
Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437 |
[13] |
Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021140 |
[14] |
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 |
[15] |
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045 |
[16] |
Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079 |
[17] |
Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427 |
[18] |
Hakima Bessaih, María J. Garrido-Atienza. Longtime behavior for 3D Navier-Stokes equations with constant delays. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1931-1948. doi: 10.3934/cpaa.2020085 |
[19] |
Chaoying Li, Xiaojing Xu, Zhuan Ye. On long-time asymptotic behavior for solutions to 2D temperature-dependent tropical climate model. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1535-1568. doi: 10.3934/dcds.2021163 |
[20] |
Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]