February  2012, 32(2): 657-677. doi: 10.3934/dcds.2012.32.657

Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

3. 

Faculty of Science, Xi'an Jiaotong University, Xi'an 710049

Received  October 2010 Revised  June 2011 Published  September 2011

In this paper, the asymptotic analysis of the two-dimensional viscoelastic Oldroyd flows is presented. With the physical constant $\rho/\delta$ approaches zero, where $\rho$ is the viscoelastic coefficient and $1/\delta$ the relaxation time, the viscoelastic Oldroyd fluid motion equations converge to the viscous model known as the famous Navier-Stokes equations. Both the continuous and discrete uniform-in-time asymptotic errors are provided. Finally, the theoretical predictions are confirmed by some numerical experiments.
Citation: Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657
References:
[1]

Y. Agranovich and P. Sobolevskiĭ, Investigation of a mathematical model of a viscoelastic fluid, (Russian), 1989 (): 3.   Google Scholar

[2]

Y. Agranovich and P. Sobolevskiĭ, Motion of non-linear visco-elastic fluid,, Nonlinear Anal., 32 (1998), 755.  doi: 10.1016/S0362-546X(97)00519-1.  Google Scholar

[3]

M. Akhmatov and A. Oskolkov, On convergence difference schemes for the equations of motion of an Oldroyd fluid,, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov., 159 (1987), 143.  doi: 10.1007/BF01305224.  Google Scholar

[4]

W. Allegretto, Y. P. Lin and A. H. Zhou, Long-time stability of finite element approximations for parabolic equations with memory,, Numer. Methods Partial Differential Equations, 15 (1999), 333.  doi: 10.1002/(SICI)1098-2426(199905)15:3<333::AID-NUM5>3.0.CO;2-0.  Google Scholar

[5]

G. Araújo, S. Menezes and A. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, J. Differential Equations, 2009 ().   Google Scholar

[6]

R. Bird, R. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids. Vol. 1, Fluid Mechanics,", John Wiley & Sons, (1977).   Google Scholar

[7]

J. Cannon, R. Ewing, Y. N. He and Y. P. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations,, Int. J. Eng. Sci., 37 (1999), 1643.  doi: 10.1016/S0020-7225(98)00142-6.  Google Scholar

[8]

P. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, 4,, North-Holland Publishing Co., (1978).   Google Scholar

[9]

V. Girault and P. Raviart, "Finite Element Approximation of the Navier-Stokes Equations,", Springer-Verlag, (1979).  doi: 10.1007/BFb0063447.  Google Scholar

[10]

D. Goswami and A. Pani, A priori error estimates for semidiscrete finite element approximations to equations of motion arising in Oldroyd fluids of order one,, Int. J. Numer. Anal. Model., 8 (2011), 324.   Google Scholar

[11]

Y. N. He and Y. Li, Asymptotic behavior of linearized viscoelastic flow problem,, Discrete Contin. Dyn. Syst.-Ser. B, 10 (2008), 843.   Google Scholar

[12]

Y. N. He and K. T. Li, Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem,, Numer. Math., 98 (2004), 647.  doi: 10.1007/s00211-004-0532-y.  Google Scholar

[13]

Y. N. He, Y. P. Lin, S. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state,, Adv. Differential Equations, 7 (2002), 717.   Google Scholar

[14]

Y. N. He, Y. P. Lin, S. Shen, W. W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem,, J. Comput. Appl. Math., 155 (2003), 201.   Google Scholar

[15]

J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem part IV: Error analysis for second-order time discretization,, SIAM J. Numer. Anal., 27 (1990), 353.  doi: 10.1137/0727022.  Google Scholar

[16]

D. Joseph, "Fluid Dynamics of Viscoelastic Liquids,", Applied Mathematical Sciences, 84 (1990).   Google Scholar

[17]

A. Kotsiolis and A. Oskolkov, Initial-boundary value problems for equations of slightly compressible Jeffreys-Oldroyd fluids,, Zap. Nauchn. Semin. POMI, 208 (1993), 200.  doi: 10.1007/BF02362429.  Google Scholar

[18]

J. Oldroyd, On the formulation of the rheological equations of state,, Proc. Roy. Soc. London. Ser. A., 200 (1950), 523.   Google Scholar

[19]

A. Oskolkov, Initial boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids, Contributions to "Boundary Value Problems of Mathematical Physics"(ed. J. Schulenberger),, Proc. Steklov Inst. Math., 179 (1989), 137.   Google Scholar

[20]

A. Oskolkov, The penalty method for equations of viscoelastic media,, Zap. Nauchn. Semin. POMI, 224 (1995), 267.  doi: 10.1007/BF02364990.  Google Scholar

[21]

A. Pani and J. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model,, IMA J. Numer. Anal., 25 (2005), 750.  doi: 10.1093/imanum/dri016.  Google Scholar

[22]

A. Pani, J. Yuan and P. Damázio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one,, SIAM J. Numer. Anal., 44 (2006), 804.  doi: 10.1137/S0036142903428967.  Google Scholar

[23]

P. Sobolevskiĭ, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model),, Differential Integral Equations, 7 (1994), 1597.   Google Scholar

[24]

P. Sobolevskiĭ, Asymptotic of stable viscoelastic fluid motion (Oldroyd's mathematical model),, Math. Nachr., 177 (1996), 281.  doi: 10.1002/mana.19961770116.  Google Scholar

[25]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", Third edition, 2 (1984).   Google Scholar

[26]

R. Temam and X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain,, Asymptot. Anal., 14 (1997), 293.   Google Scholar

[27]

R. Temam and X. Wang, Boundary layers asscociated with incompressible Navier-Stokes equations: The noncharacteristic boundary case,, J. Differential Equations, 179 (2002), 647.  doi: 10.1006/jdeq.2001.4038.  Google Scholar

[28]

K. Wang, Y. N. He and X. L. Feng, On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization,, Appl. Math. Model., 34 (2010), 4089.  doi: 10.1016/j.apm.2010.04.008.  Google Scholar

[29]

K. Wang, Y. N. He and Y. Q. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations,, Discrete Contin. Dyn. Syst.-Ser. B, 13 (2010), 665.   Google Scholar

[30]

K. Wang, Y. Q. Shang and R. Zhao, Optimal error estimates of the penalty method for the linearized viscoelastic flows,, Int. J. Comput. Math., 87 (2010), 3236.  doi: 10.1080/00207160902980500.  Google Scholar

show all references

References:
[1]

Y. Agranovich and P. Sobolevskiĭ, Investigation of a mathematical model of a viscoelastic fluid, (Russian), 1989 (): 3.   Google Scholar

[2]

Y. Agranovich and P. Sobolevskiĭ, Motion of non-linear visco-elastic fluid,, Nonlinear Anal., 32 (1998), 755.  doi: 10.1016/S0362-546X(97)00519-1.  Google Scholar

[3]

M. Akhmatov and A. Oskolkov, On convergence difference schemes for the equations of motion of an Oldroyd fluid,, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov., 159 (1987), 143.  doi: 10.1007/BF01305224.  Google Scholar

[4]

W. Allegretto, Y. P. Lin and A. H. Zhou, Long-time stability of finite element approximations for parabolic equations with memory,, Numer. Methods Partial Differential Equations, 15 (1999), 333.  doi: 10.1002/(SICI)1098-2426(199905)15:3<333::AID-NUM5>3.0.CO;2-0.  Google Scholar

[5]

G. Araújo, S. Menezes and A. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, J. Differential Equations, 2009 ().   Google Scholar

[6]

R. Bird, R. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids. Vol. 1, Fluid Mechanics,", John Wiley & Sons, (1977).   Google Scholar

[7]

J. Cannon, R. Ewing, Y. N. He and Y. P. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations,, Int. J. Eng. Sci., 37 (1999), 1643.  doi: 10.1016/S0020-7225(98)00142-6.  Google Scholar

[8]

P. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, 4,, North-Holland Publishing Co., (1978).   Google Scholar

[9]

V. Girault and P. Raviart, "Finite Element Approximation of the Navier-Stokes Equations,", Springer-Verlag, (1979).  doi: 10.1007/BFb0063447.  Google Scholar

[10]

D. Goswami and A. Pani, A priori error estimates for semidiscrete finite element approximations to equations of motion arising in Oldroyd fluids of order one,, Int. J. Numer. Anal. Model., 8 (2011), 324.   Google Scholar

[11]

Y. N. He and Y. Li, Asymptotic behavior of linearized viscoelastic flow problem,, Discrete Contin. Dyn. Syst.-Ser. B, 10 (2008), 843.   Google Scholar

[12]

Y. N. He and K. T. Li, Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem,, Numer. Math., 98 (2004), 647.  doi: 10.1007/s00211-004-0532-y.  Google Scholar

[13]

Y. N. He, Y. P. Lin, S. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state,, Adv. Differential Equations, 7 (2002), 717.   Google Scholar

[14]

Y. N. He, Y. P. Lin, S. Shen, W. W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem,, J. Comput. Appl. Math., 155 (2003), 201.   Google Scholar

[15]

J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem part IV: Error analysis for second-order time discretization,, SIAM J. Numer. Anal., 27 (1990), 353.  doi: 10.1137/0727022.  Google Scholar

[16]

D. Joseph, "Fluid Dynamics of Viscoelastic Liquids,", Applied Mathematical Sciences, 84 (1990).   Google Scholar

[17]

A. Kotsiolis and A. Oskolkov, Initial-boundary value problems for equations of slightly compressible Jeffreys-Oldroyd fluids,, Zap. Nauchn. Semin. POMI, 208 (1993), 200.  doi: 10.1007/BF02362429.  Google Scholar

[18]

J. Oldroyd, On the formulation of the rheological equations of state,, Proc. Roy. Soc. London. Ser. A., 200 (1950), 523.   Google Scholar

[19]

A. Oskolkov, Initial boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids, Contributions to "Boundary Value Problems of Mathematical Physics"(ed. J. Schulenberger),, Proc. Steklov Inst. Math., 179 (1989), 137.   Google Scholar

[20]

A. Oskolkov, The penalty method for equations of viscoelastic media,, Zap. Nauchn. Semin. POMI, 224 (1995), 267.  doi: 10.1007/BF02364990.  Google Scholar

[21]

A. Pani and J. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model,, IMA J. Numer. Anal., 25 (2005), 750.  doi: 10.1093/imanum/dri016.  Google Scholar

[22]

A. Pani, J. Yuan and P. Damázio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one,, SIAM J. Numer. Anal., 44 (2006), 804.  doi: 10.1137/S0036142903428967.  Google Scholar

[23]

P. Sobolevskiĭ, Stabilization of viscoelastic fluid motion (Oldroyd's mathematical model),, Differential Integral Equations, 7 (1994), 1597.   Google Scholar

[24]

P. Sobolevskiĭ, Asymptotic of stable viscoelastic fluid motion (Oldroyd's mathematical model),, Math. Nachr., 177 (1996), 281.  doi: 10.1002/mana.19961770116.  Google Scholar

[25]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", Third edition, 2 (1984).   Google Scholar

[26]

R. Temam and X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain,, Asymptot. Anal., 14 (1997), 293.   Google Scholar

[27]

R. Temam and X. Wang, Boundary layers asscociated with incompressible Navier-Stokes equations: The noncharacteristic boundary case,, J. Differential Equations, 179 (2002), 647.  doi: 10.1006/jdeq.2001.4038.  Google Scholar

[28]

K. Wang, Y. N. He and X. L. Feng, On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization,, Appl. Math. Model., 34 (2010), 4089.  doi: 10.1016/j.apm.2010.04.008.  Google Scholar

[29]

K. Wang, Y. N. He and Y. Q. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations,, Discrete Contin. Dyn. Syst.-Ser. B, 13 (2010), 665.   Google Scholar

[30]

K. Wang, Y. Q. Shang and R. Zhao, Optimal error estimates of the penalty method for the linearized viscoelastic flows,, Int. J. Comput. Math., 87 (2010), 3236.  doi: 10.1080/00207160902980500.  Google Scholar

[1]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[2]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[3]

Anhui Gu, Boling Guo, Bixiang Wang. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020020

[4]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[5]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[6]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[7]

Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008

[8]

Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052

[9]

Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055

[10]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[11]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[12]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[13]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[14]

Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427

[15]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[16]

Gabriela Planas, Eduardo Hernández. Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1245-1258. doi: 10.3934/dcds.2008.21.1245

[17]

Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243

[18]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[19]

Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843

[20]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]