\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Closed trajectories on symmetric convex Hamiltonian energy surfaces

Abstract / Introduction Related Papers Cited by
  • In this article, let $\Sigma\subset\mathbf{R}^{2n}$ be a compact convex Hamiltonian energy surface which is symmetric with respect to the origin, where $n\ge 2$. We prove that there exist at least two geometrically distinct symmetric closed trajectories of the Reeb vector field on $\Sigma$.
    Mathematics Subject Classification: Primary: 58E05, 37J45; Secondary: 37C75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Borel, "Seminar on Transformation Groups," Annals of Mathematics Studies, No. 46, Princeton Univ. Press, Princeton, 1960.

    [2]

    I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. IHP. Anal. non Linéaire, 1 (1984), 19-78.

    [3]

    I. Ekeland, "Convexity Methods in Hamiltonian Mechanics," Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 19, Springer-Verlag, Berlin, 1990.

    [4]

    I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their closed trajectories, Comm. Math. Phys., 113 (1987), 419-469.doi: 10.1007/BF01221255.

    [5]

    I. Ekeland and L. Lassoued, Multiplicité des trajectoires fermées d'un systéme hamiltoniens convexes, Ann. IHP. Anal. non Linéaire, 4 (1987), 307-335.

    [6]

    E. Fadell and P. Rabinowitz, Generalized comological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), 139-174.doi: 10.1007/BF01390270.

    [7]

    H. Hofer, K. Wysocki, and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math., 148 (1998), 197-289.doi: 10.2307/120994.

    [8]

    Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149.

    [9]

    Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Advances in Math., 154 (2000), 76-131.doi: 10.1006/aima.2000.1914.

    [10]

    Y. Long, "Index Theory for Symplectic Paths with Applications," Progress in Math., 207, Birkhäuser Verlag, Basel, 2002.

    [11]

    C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbfR^{2n}$, Math. Ann., 323 (2002), 201-215.doi: 10.1007/s002089100257.

    [12]

    Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in $\mathbfR^{2n}$, Ann. of Math., 155 (2002), 317-368.doi: 10.2307/3062120.

    [13]

    P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.doi: 10.1002/cpa.3160310203.

    [14]

    A. Szulkin, Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. Soc. Math. France, 116 (1988), 171-197.

    [15]

    C. Viterbo, Equivariant Morse theory for starshaped Hamiltonian systems, Trans. Amer. Math. Soc., 311 (1989), 621-655.doi: 10.1090/S0002-9947-1989-0978370-5.

    [16]

    W. Wang, X. Hu and Y. Long, Resonance identity, stability and multiplicity of closed characteristics on compact convex hypersurfaces, Duke Math. J., 139 (2007), 411-462.doi: 10.1215/S0012-7094-07-13931-0.

    [17]

    W. Wang, Stability of closed characteristics on compact convex hypersurfaces in $R^6$, J. Eur. Math. Soc., 11 (2009), 575-596.doi: 10.4171/JEMS/161.

    [18]

    W. Wang, Symmetric closed characteristics on symmetric compact convex hypersurfaces in $R^{2n}$, J. Diff. Equa., 246 (2009), 4322-4331.doi: 10.1016/j.jde.2008.10.003.

    [19]

    A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math., 108 (1978), 507-518.doi: 10.2307/1971185.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return