March  2012, 32(3): 703-715. doi: 10.3934/dcds.2012.32.703

On the Cauchy problem for nonlinear Schrödinger equations with rotation

1. 

Department of Applied Mathematics and Theoretical Physics, CMS, Wilberforce Road, Cambridge CB3 0WA, United Kingdom, United Kingdom

2. 

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 South Morgan Street, Chicago, Illinois 60607, United States

Received  September 2010 Revised  March 2011 Published  October 2011

We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superfluid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable influence in proving finite time blow-up in the focusing case.
Citation: Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703
References:
[1]

A. Aftalion, "Vortices in Bose-Einstein Condensates," Progress in Nonlinear Differential Equations and their Applications, 67, Birkhäuser Boston, Inc., Boston, MA, 2006.

[2]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys., 287 (2009), 657-686.

[3]

A. V. Babin, A. A. Ilyin and E. S. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Applied Math., 64 (2011), 591-648. doi: 10.1002/cpa.20356.

[4]

W. Bao, Q. Du and Y. Z. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math., 66 (2006), 758-786. doi: 10.1137/050629392.

[5]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843. doi: 10.1137/S0036141002416936.

[6]

R. Carles, Global existence results for nonlinear Schrödinger equations with quadratic potentials, Discrete Contin. Dyn. Syst., 13 (2005), 385-398. doi: 10.3934/dcds.2005.13.385.

[7]

R. Carles, Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9 (2011), no. 4, 937-964.

[8]

T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, New York University Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003.

[9]

D. Choi and Q. Niu, Bose-Einstein condensates in an optical lattice, Phys. Rev. Lett., 82 (1999), 2022-2025. doi: 10.1103/PhysRevLett.82.2022.

[10]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797. doi: 10.1063/1.523491.

[11]

C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term, Math. Methods Appl. Sci., 31 (2008), 655-664. doi: 10.1002/mma.931.

[12]

C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions, J. Math. Phys., 48 (2007), 102105, 11 pp.

[13]

N. A. Jamaludin, N. G. Parker and A. M. Martin, Bright solitary waves of atomic Bose-Einstein condensates under rotation, Phys. Rev. A, 77 (2008), 051603. doi: 10.1103/PhysRevA.77.051603.

[14]

O. Kavian and F. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., 41 (1994), 151-173.

[15]

H. Kitada, On a construction of the fundamental solution for Schrödinger equations, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 27 (1980), 193-226.

[16]

E. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Comm. Math. Phys., 264 (2006), 505-537. doi: 10.1007/s00220-006-1524-9.

[17]

H. Liu, Critical thresholds in the semiclassical limit of 2-D rotational Schrödinger equations, Z. Angew. Math. Phys., 57 (2006), 42-58. doi: 10.1007/s00033-005-0004-y.

[18]

H. Liu and C. Sparber, Rigorous derivation of the hydrodynamical equations for rotating superfluids, Math. Models Methods Appl. Sci., 18 (2008), 689-706. doi: 10.1142/S0218202508002826.

[19]

H. Liu and E. Tadmor, Rotation prevents finite-time breakdown, Phys. D, 188 (2004), 262-276. doi: 10.1016/j.physd.2003.07.006.

[20]

K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84 (2000), 806-809. doi: 10.1103/PhysRevLett.84.806.

[21]

K. W. Madison, F. Chevy, V. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation, Phys. Rev. Lett., 86 (2001), 4443-4446. doi: 10.1103/PhysRevLett.86.4443.

[22]

M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate, Phys. Rev. Lett., 83 (1999), 2498-2501. doi: 10.1103/PhysRevLett.83.2498.

[23]

P. Raphaël, On the blow up phenomenon for the $L^2$ critical non linear Schrödinger equation, in "Lectures on Nonlinear Dispersive Equations," GAKUTO Internat. Ser. Math. Sci. Appl., 27, Gakkōtosho, Tokyo, (2006), 9-61.

[24]

R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas, Comm. Math. Phys., 229 (2002), 491-509. doi: 10.1007/s00220-002-0695-2.

[25]

S. Stock, B. Battelier, V. Bretin, Z. Hadzibabic and J. Dalibard, Bose-Einstein condensates in fast rotation, Laser Phy. Lett., 2 (2005), 275-284. doi: 10.1002/lapl.200410177.

[26]

M. C. Tsatsos, Attractive Bose-Einstein Condensates in three dimensions under rotation: Revisiting the problem of stability of the ground state in harmonic traps, Phys. Rev. A, 83 (2011), 063615. doi: 10.1103/PhysRevA.83.063615.

show all references

References:
[1]

A. Aftalion, "Vortices in Bose-Einstein Condensates," Progress in Nonlinear Differential Equations and their Applications, 67, Birkhäuser Boston, Inc., Boston, MA, 2006.

[2]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys., 287 (2009), 657-686.

[3]

A. V. Babin, A. A. Ilyin and E. S. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Applied Math., 64 (2011), 591-648. doi: 10.1002/cpa.20356.

[4]

W. Bao, Q. Du and Y. Z. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math., 66 (2006), 758-786. doi: 10.1137/050629392.

[5]

R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications, SIAM J. Math. Anal., 35 (2003), 823-843. doi: 10.1137/S0036141002416936.

[6]

R. Carles, Global existence results for nonlinear Schrödinger equations with quadratic potentials, Discrete Contin. Dyn. Syst., 13 (2005), 385-398. doi: 10.3934/dcds.2005.13.385.

[7]

R. Carles, Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9 (2011), no. 4, 937-964.

[8]

T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, New York University Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003.

[9]

D. Choi and Q. Niu, Bose-Einstein condensates in an optical lattice, Phys. Rev. Lett., 82 (1999), 2022-2025. doi: 10.1103/PhysRevLett.82.2022.

[10]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797. doi: 10.1063/1.523491.

[11]

C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term, Math. Methods Appl. Sci., 31 (2008), 655-664. doi: 10.1002/mma.931.

[12]

C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions, J. Math. Phys., 48 (2007), 102105, 11 pp.

[13]

N. A. Jamaludin, N. G. Parker and A. M. Martin, Bright solitary waves of atomic Bose-Einstein condensates under rotation, Phys. Rev. A, 77 (2008), 051603. doi: 10.1103/PhysRevA.77.051603.

[14]

O. Kavian and F. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., 41 (1994), 151-173.

[15]

H. Kitada, On a construction of the fundamental solution for Schrödinger equations, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 27 (1980), 193-226.

[16]

E. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Comm. Math. Phys., 264 (2006), 505-537. doi: 10.1007/s00220-006-1524-9.

[17]

H. Liu, Critical thresholds in the semiclassical limit of 2-D rotational Schrödinger equations, Z. Angew. Math. Phys., 57 (2006), 42-58. doi: 10.1007/s00033-005-0004-y.

[18]

H. Liu and C. Sparber, Rigorous derivation of the hydrodynamical equations for rotating superfluids, Math. Models Methods Appl. Sci., 18 (2008), 689-706. doi: 10.1142/S0218202508002826.

[19]

H. Liu and E. Tadmor, Rotation prevents finite-time breakdown, Phys. D, 188 (2004), 262-276. doi: 10.1016/j.physd.2003.07.006.

[20]

K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84 (2000), 806-809. doi: 10.1103/PhysRevLett.84.806.

[21]

K. W. Madison, F. Chevy, V. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation, Phys. Rev. Lett., 86 (2001), 4443-4446. doi: 10.1103/PhysRevLett.86.4443.

[22]

M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate, Phys. Rev. Lett., 83 (1999), 2498-2501. doi: 10.1103/PhysRevLett.83.2498.

[23]

P. Raphaël, On the blow up phenomenon for the $L^2$ critical non linear Schrödinger equation, in "Lectures on Nonlinear Dispersive Equations," GAKUTO Internat. Ser. Math. Sci. Appl., 27, Gakkōtosho, Tokyo, (2006), 9-61.

[24]

R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas, Comm. Math. Phys., 229 (2002), 491-509. doi: 10.1007/s00220-002-0695-2.

[25]

S. Stock, B. Battelier, V. Bretin, Z. Hadzibabic and J. Dalibard, Bose-Einstein condensates in fast rotation, Laser Phy. Lett., 2 (2005), 275-284. doi: 10.1002/lapl.200410177.

[26]

M. C. Tsatsos, Attractive Bose-Einstein Condensates in three dimensions under rotation: Revisiting the problem of stability of the ground state in harmonic traps, Phys. Rev. A, 83 (2011), 063615. doi: 10.1103/PhysRevA.83.063615.

[1]

Vladimir S. Gerdjikov. Bose-Einstein condensates and spectral properties of multicomponent nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1181-1197. doi: 10.3934/dcdss.2011.4.1181

[2]

Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793

[3]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic and Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[4]

Kui Li, Zhitao Zhang. A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 851-860. doi: 10.3934/dcds.2016.36.851

[5]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

[6]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[7]

P.G. Kevrekidis, Dimitri J. Frantzeskakis. Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1199-1212. doi: 10.3934/dcdss.2011.4.1199

[8]

Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic and Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029

[9]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[10]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[12]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[13]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[14]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[15]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[16]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[17]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[18]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[19]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[20]

Jinmyong An, Roesong Jang, Jinmyong Kim. Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022111

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (189)
  • HTML views (0)
  • Cited by (16)

[Back to Top]