-
Previous Article
Localized asymptotic behavior for almost additive potentials
- DCDS Home
- This Issue
- Next Article
On the Cauchy problem for nonlinear Schrödinger equations with rotation
1. | Department of Applied Mathematics and Theoretical Physics, CMS, Wilberforce Road, Cambridge CB3 0WA, United Kingdom, United Kingdom |
2. | Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 South Morgan Street, Chicago, Illinois 60607, United States |
References:
[1] |
A. Aftalion, "Vortices in Bose-Einstein Condensates,", Progress in Nonlinear Differential Equations and their Applications, 67 (2006).
|
[2] |
P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics,, Comm. Math. Phys., 287 (2009), 657.
|
[3] |
A. V. Babin, A. A. Ilyin and E. S. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation,, Comm. Pure Applied Math., 64 (2011), 591.
doi: 10.1002/cpa.20356. |
[4] |
W. Bao, Q. Du and Y. Z. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation,, SIAM J. Appl. Math., 66 (2006), 758.
doi: 10.1137/050629392. |
[5] |
R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823.
doi: 10.1137/S0036141002416936. |
[6] |
R. Carles, Global existence results for nonlinear Schrödinger equations with quadratic potentials,, Discrete Contin. Dyn. Syst., 13 (2005), 385.
doi: 10.3934/dcds.2005.13.385. |
[7] |
R. Carles, Nonlinear Schrödinger equation with time dependent potential,, Commun. Math. Sci., 9 (2011), 937. Google Scholar |
[8] |
T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).
|
[9] |
D. Choi and Q. Niu, Bose-Einstein condensates in an optical lattice,, Phys. Rev. Lett., 82 (1999), 2022.
doi: 10.1103/PhysRevLett.82.2022. |
[10] |
R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations,, J. Math. Phys., 18 (1977), 1794.
doi: 10.1063/1.523491. |
[11] |
C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term,, Math. Methods Appl. Sci., 31 (2008), 655.
doi: 10.1002/mma.931. |
[12] |
C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions,, J. Math. Phys., 48 (2007).
|
[13] |
N. A. Jamaludin, N. G. Parker and A. M. Martin, Bright solitary waves of atomic Bose-Einstein condensates under rotation,, Phys. Rev. A, 77 (2008).
doi: 10.1103/PhysRevA.77.051603. |
[14] |
O. Kavian and F. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation,, Michigan Math. J., 41 (1994), 151.
|
[15] |
H. Kitada, On a construction of the fundamental solution for Schrödinger equations,, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 27 (1980), 193.
|
[16] |
E. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases,, Comm. Math. Phys., 264 (2006), 505.
doi: 10.1007/s00220-006-1524-9. |
[17] |
H. Liu, Critical thresholds in the semiclassical limit of 2-D rotational Schrödinger equations,, Z. Angew. Math. Phys., 57 (2006), 42.
doi: 10.1007/s00033-005-0004-y. |
[18] |
H. Liu and C. Sparber, Rigorous derivation of the hydrodynamical equations for rotating superfluids,, Math. Models Methods Appl. Sci., 18 (2008), 689.
doi: 10.1142/S0218202508002826. |
[19] |
H. Liu and E. Tadmor, Rotation prevents finite-time breakdown,, Phys. D, 188 (2004), 262.
doi: 10.1016/j.physd.2003.07.006. |
[20] |
K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate,, Phys. Rev. Lett., 84 (2000), 806.
doi: 10.1103/PhysRevLett.84.806. |
[21] |
K. W. Madison, F. Chevy, V. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation,, Phys. Rev. Lett., 86 (2001), 4443.
doi: 10.1103/PhysRevLett.86.4443. |
[22] |
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate,, Phys. Rev. Lett., 83 (1999), 2498.
doi: 10.1103/PhysRevLett.83.2498. |
[23] |
P. Raphaël, On the blow up phenomenon for the $L^2$ critical non linear Schrödinger equation,, in, 27 (2006), 9.
|
[24] |
R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas,, Comm. Math. Phys., 229 (2002), 491.
doi: 10.1007/s00220-002-0695-2. |
[25] |
S. Stock, B. Battelier, V. Bretin, Z. Hadzibabic and J. Dalibard, Bose-Einstein condensates in fast rotation,, Laser Phy. Lett., 2 (2005), 275.
doi: 10.1002/lapl.200410177. |
[26] |
M. C. Tsatsos, Attractive Bose-Einstein Condensates in three dimensions under rotation: Revisiting the problem of stability of the ground state in harmonic traps,, Phys. Rev. A, 83 (2011).
doi: 10.1103/PhysRevA.83.063615. |
show all references
References:
[1] |
A. Aftalion, "Vortices in Bose-Einstein Condensates,", Progress in Nonlinear Differential Equations and their Applications, 67 (2006).
|
[2] |
P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics,, Comm. Math. Phys., 287 (2009), 657.
|
[3] |
A. V. Babin, A. A. Ilyin and E. S. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation,, Comm. Pure Applied Math., 64 (2011), 591.
doi: 10.1002/cpa.20356. |
[4] |
W. Bao, Q. Du and Y. Z. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation,, SIAM J. Appl. Math., 66 (2006), 758.
doi: 10.1137/050629392. |
[5] |
R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applications,, SIAM J. Math. Anal., 35 (2003), 823.
doi: 10.1137/S0036141002416936. |
[6] |
R. Carles, Global existence results for nonlinear Schrödinger equations with quadratic potentials,, Discrete Contin. Dyn. Syst., 13 (2005), 385.
doi: 10.3934/dcds.2005.13.385. |
[7] |
R. Carles, Nonlinear Schrödinger equation with time dependent potential,, Commun. Math. Sci., 9 (2011), 937. Google Scholar |
[8] |
T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).
|
[9] |
D. Choi and Q. Niu, Bose-Einstein condensates in an optical lattice,, Phys. Rev. Lett., 82 (1999), 2022.
doi: 10.1103/PhysRevLett.82.2022. |
[10] |
R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations,, J. Math. Phys., 18 (1977), 1794.
doi: 10.1063/1.523491. |
[11] |
C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term,, Math. Methods Appl. Sci., 31 (2008), 655.
doi: 10.1002/mma.931. |
[12] |
C. Hao, L. Hsiao and H.-L. Li, Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions,, J. Math. Phys., 48 (2007).
|
[13] |
N. A. Jamaludin, N. G. Parker and A. M. Martin, Bright solitary waves of atomic Bose-Einstein condensates under rotation,, Phys. Rev. A, 77 (2008).
doi: 10.1103/PhysRevA.77.051603. |
[14] |
O. Kavian and F. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation,, Michigan Math. J., 41 (1994), 151.
|
[15] |
H. Kitada, On a construction of the fundamental solution for Schrödinger equations,, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 27 (1980), 193.
|
[16] |
E. Lieb and R. Seiringer, Derivation of the Gross-Pitaevskii equation for rotating Bose gases,, Comm. Math. Phys., 264 (2006), 505.
doi: 10.1007/s00220-006-1524-9. |
[17] |
H. Liu, Critical thresholds in the semiclassical limit of 2-D rotational Schrödinger equations,, Z. Angew. Math. Phys., 57 (2006), 42.
doi: 10.1007/s00033-005-0004-y. |
[18] |
H. Liu and C. Sparber, Rigorous derivation of the hydrodynamical equations for rotating superfluids,, Math. Models Methods Appl. Sci., 18 (2008), 689.
doi: 10.1142/S0218202508002826. |
[19] |
H. Liu and E. Tadmor, Rotation prevents finite-time breakdown,, Phys. D, 188 (2004), 262.
doi: 10.1016/j.physd.2003.07.006. |
[20] |
K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate,, Phys. Rev. Lett., 84 (2000), 806.
doi: 10.1103/PhysRevLett.84.806. |
[21] |
K. W. Madison, F. Chevy, V. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation,, Phys. Rev. Lett., 86 (2001), 4443.
doi: 10.1103/PhysRevLett.86.4443. |
[22] |
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate,, Phys. Rev. Lett., 83 (1999), 2498.
doi: 10.1103/PhysRevLett.83.2498. |
[23] |
P. Raphaël, On the blow up phenomenon for the $L^2$ critical non linear Schrödinger equation,, in, 27 (2006), 9.
|
[24] |
R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas,, Comm. Math. Phys., 229 (2002), 491.
doi: 10.1007/s00220-002-0695-2. |
[25] |
S. Stock, B. Battelier, V. Bretin, Z. Hadzibabic and J. Dalibard, Bose-Einstein condensates in fast rotation,, Laser Phy. Lett., 2 (2005), 275.
doi: 10.1002/lapl.200410177. |
[26] |
M. C. Tsatsos, Attractive Bose-Einstein Condensates in three dimensions under rotation: Revisiting the problem of stability of the ground state in harmonic traps,, Phys. Rev. A, 83 (2011).
doi: 10.1103/PhysRevA.83.063615. |
[1] |
Vladimir S. Gerdjikov. Bose-Einstein condensates and spectral properties of multicomponent nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1181-1197. doi: 10.3934/dcdss.2011.4.1181 |
[2] |
Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793 |
[3] |
Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1 |
[4] |
Kui Li, Zhitao Zhang. A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 851-860. doi: 10.3934/dcds.2016.36.851 |
[5] |
Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781 |
[6] |
Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629 |
[7] |
P.G. Kevrekidis, Dimitri J. Frantzeskakis. Multiple dark solitons in Bose-Einstein condensates at finite temperatures. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1199-1212. doi: 10.3934/dcdss.2011.4.1199 |
[8] |
Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic & Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029 |
[9] |
Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 |
[10] |
Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651 |
[11] |
Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050 |
[12] |
Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11 |
[13] |
Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 |
[14] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[15] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[16] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[17] |
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 |
[18] |
Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065 |
[19] |
Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051 |
[20] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]