March  2012, 32(3): 717-751. doi: 10.3934/dcds.2012.32.717

Localized asymptotic behavior for almost additive potentials

1. 

LAGA (UMR 7539), Département de Mathématiques, Institut Galilée, Université Paris 13, Villetaneuse, France

2. 

Department of Mathematics, Tsinghua University, Beijing, China

Received  September 2010 Revised  December 2010 Published  October 2011

We conduct the multifractal analysis of the level sets of the asymptotic behavior of almost additive continuous potentials $(\phi_n)_{n=1}^\infty$ on a topologically mixing subshift of finite type $X$ endowed itself with a metric associated with such a potential. We work without additional regularity assumption other than continuity. Our approach differs from those used previously to deal with this question under stronger assumptions on the potentials. As a consequence, it provides a new description of the structure of the spectrum in terms of weak concavity. Also, the lower bound for the spectrum is obtained as a consequence of the study sets of points at which the asymptotic behavior of $\phi_n(x)$ is localized, i.e. depends on the point $x$ rather than being equal to a constant. Specifically, we compute the Hausdorff dimension of sets of the form $\{x\in X: \lim_{n\to\infty} \phi_n(x)/n=\xi(x)\}$, where $\xi$ is a given continuous function. This has interesting geometric applications to fixed points in the asymptotic average for dynamical systems in $\mathbb{R}^d$, as well as the fine local behavior of the harmonic measure on conformal planar Cantor sets.
Citation: Julien Barral, Yan-Hui Qu. Localized asymptotic behavior for almost additive potentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 717-751. doi: 10.3934/dcds.2012.32.717
References:
[1]

J. Barral and D. J. Feng, Weighted thermodynamic formalism and applications,, \arXiv{0909.4247v1}., ().   Google Scholar

[2]

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems,, Ergod. Th. Dynam. Sys., 16 (1996), 871.  doi: 10.1017/S0143385700010117.  Google Scholar

[3]

L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures,, Discrete Contin. Dyn. Syst., 16 (2006), 279.  doi: 10.3934/dcds.2006.16.279.  Google Scholar

[4]

L. Barreira and P. Doutor, Almost additive multifractal analysis,, J. Math. Pures Appl., 92 (2009), 1.  doi: 10.1016/j.matpur.2009.04.006.  Google Scholar

[5]

L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows,, Comm. Math. Phys., 214 (2000), 339.  doi: 10.1007/s002200000268.  Google Scholar

[6]

L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis,, J. Math. Pures Appl. (9), 81 (2002), 67.  doi: 10.1016/S0021-7824(01)01228-4.  Google Scholar

[7]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[8]

R. Bowen, Hausdorff dimension of quasicircles,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11.   Google Scholar

[9]

R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte, The dissection of rectangles into squares,, Duke Math. J., 7 (1940), 312.  doi: 10.1215/S0012-7094-40-00718-9.  Google Scholar

[10]

G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures,, J. Stat. Phys., 66 (1992), 775.  doi: 10.1007/BF01055700.  Google Scholar

[11]

Y.-L. Cao, D.-J. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials,, Discrete Contin. Dyn. Syst., 20 (2008), 639.   Google Scholar

[12]

P. Collet, J. L. Lebowitz and A. Porzio, The dimension spectrum of some dynamical systems,, J. Statist. Phys., 47 (1987), 609.  doi: 10.1007/BF01206149.  Google Scholar

[13]

K. J. Falconer, A subadditive thermodynamic formalism for mixing repellers,, J. Phys. A, 21 (1988).  doi: 10.1088/0305-4470/21/14/005.  Google Scholar

[14]

A.-H. Fan and D.-J. Feng, On the distribution of long-term time averages on symbolic space,, J. Statist. Phys., 99 (2000), 813.  doi: 10.1023/A:1018643512559.  Google Scholar

[15]

A.-H. Fan, D.-J. Feng and J. Wu, Recurrence, dimension and entropy,, J. London Math. Soc., 64 (2001), 229.  doi: 10.1017/S0024610701002137.  Google Scholar

[16]

D.-J. Feng, Lyapounov exponents for products of matrices and multifractal analysis. Part I: Positive matrices,, Israel J. Math., 138 (2003), 353.  doi: 10.1007/BF02783432.  Google Scholar

[17]

D.-J. Feng, The variational principle for products of non-negative matrices,, Nonlinearity, 17 (2004), 447.  doi: 10.1088/0951-7715/17/2/004.  Google Scholar

[18]

D.-J. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials,, Commun. Math. Phys., 297 (2010), 1.  doi: 10.1007/s00220-010-1031-x.  Google Scholar

[19]

D.-J. Feng and K.-S. Lau, The pressure function for products of non-negative matrices,, Math. Res. Lett., 9 (2002), 363.   Google Scholar

[20]

D.-J. Feng, K.-S. Lau and J. Wu, Ergodic limits on the conformal repellers,, Adv. Math., 169 (2002), 58.  doi: 10.1006/aima.2001.2054.  Google Scholar

[21]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps,, Ergod. Th. Dynam. Sys., 17 (1997), 147.  doi: 10.1017/S0143385797060987.  Google Scholar

[22]

M. Kesseböhmer, Large deviation for weak Gibbs measures and multifractal spectra,, Nonlinearity, 14 (2001), 395.  doi: 10.1088/0951-7715/14/2/312.  Google Scholar

[23]

M. Kesseböhmer and B. Stratmann, A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups,, Ergod. Th. Dynam. Sys., 24 (2004), 141.   Google Scholar

[24]

N. G. Makarov, Fine structure of harmonic measure,, St. Peterburg Math. J., 10 (1999), 217.   Google Scholar

[25]

A. Mummert, The thermodynamic formalism for almost-additive sequences,, Discrete Contin. Dyn. Syst., 16 (2006), 435.  doi: 10.3934/dcds.2006.16.435.  Google Scholar

[26]

E. Olivier, Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for $g$-measures,, Nonlinearity, 12 (1999), 1571.  doi: 10.1088/0951-7715/12/6/309.  Google Scholar

[27]

L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages,, J. Math. Pures Appl., 82 (2003), 1591.  doi: 10.1016/j.matpur.2003.09.007.  Google Scholar

[28]

Y. Peres, M. Rams, K. Simon and B. Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets,, Proc. Amer. Math. Soc., 129 (2001), 2689.  doi: 10.1090/S0002-9939-01-05969-X.  Google Scholar

[29]

Y. Pesin, "Dimension Theory in Dynamical Systems. Contemporary Views and Applications,", Chicago Lectures in Mathematics, (1997).   Google Scholar

[30]

Y. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions,, J. Statist. Phys., 86 (1997), 233.  doi: 10.1007/BF02180206.  Google Scholar

[31]

Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, Mathematical Foundation, and Examples,, Chaos, 7 (1997), 89.  doi: 10.1063/1.166242.  Google Scholar

[32]

D. A. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters,, Ergod. Th. Dynam. Sys., 9 (1989), 527.   Google Scholar

[33]

D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics,", Encyclopedia of Mathematics and its Applications, 5 (1978).   Google Scholar

show all references

References:
[1]

J. Barral and D. J. Feng, Weighted thermodynamic formalism and applications,, \arXiv{0909.4247v1}., ().   Google Scholar

[2]

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems,, Ergod. Th. Dynam. Sys., 16 (1996), 871.  doi: 10.1017/S0143385700010117.  Google Scholar

[3]

L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures,, Discrete Contin. Dyn. Syst., 16 (2006), 279.  doi: 10.3934/dcds.2006.16.279.  Google Scholar

[4]

L. Barreira and P. Doutor, Almost additive multifractal analysis,, J. Math. Pures Appl., 92 (2009), 1.  doi: 10.1016/j.matpur.2009.04.006.  Google Scholar

[5]

L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows,, Comm. Math. Phys., 214 (2000), 339.  doi: 10.1007/s002200000268.  Google Scholar

[6]

L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis,, J. Math. Pures Appl. (9), 81 (2002), 67.  doi: 10.1016/S0021-7824(01)01228-4.  Google Scholar

[7]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[8]

R. Bowen, Hausdorff dimension of quasicircles,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11.   Google Scholar

[9]

R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte, The dissection of rectangles into squares,, Duke Math. J., 7 (1940), 312.  doi: 10.1215/S0012-7094-40-00718-9.  Google Scholar

[10]

G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures,, J. Stat. Phys., 66 (1992), 775.  doi: 10.1007/BF01055700.  Google Scholar

[11]

Y.-L. Cao, D.-J. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials,, Discrete Contin. Dyn. Syst., 20 (2008), 639.   Google Scholar

[12]

P. Collet, J. L. Lebowitz and A. Porzio, The dimension spectrum of some dynamical systems,, J. Statist. Phys., 47 (1987), 609.  doi: 10.1007/BF01206149.  Google Scholar

[13]

K. J. Falconer, A subadditive thermodynamic formalism for mixing repellers,, J. Phys. A, 21 (1988).  doi: 10.1088/0305-4470/21/14/005.  Google Scholar

[14]

A.-H. Fan and D.-J. Feng, On the distribution of long-term time averages on symbolic space,, J. Statist. Phys., 99 (2000), 813.  doi: 10.1023/A:1018643512559.  Google Scholar

[15]

A.-H. Fan, D.-J. Feng and J. Wu, Recurrence, dimension and entropy,, J. London Math. Soc., 64 (2001), 229.  doi: 10.1017/S0024610701002137.  Google Scholar

[16]

D.-J. Feng, Lyapounov exponents for products of matrices and multifractal analysis. Part I: Positive matrices,, Israel J. Math., 138 (2003), 353.  doi: 10.1007/BF02783432.  Google Scholar

[17]

D.-J. Feng, The variational principle for products of non-negative matrices,, Nonlinearity, 17 (2004), 447.  doi: 10.1088/0951-7715/17/2/004.  Google Scholar

[18]

D.-J. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials,, Commun. Math. Phys., 297 (2010), 1.  doi: 10.1007/s00220-010-1031-x.  Google Scholar

[19]

D.-J. Feng and K.-S. Lau, The pressure function for products of non-negative matrices,, Math. Res. Lett., 9 (2002), 363.   Google Scholar

[20]

D.-J. Feng, K.-S. Lau and J. Wu, Ergodic limits on the conformal repellers,, Adv. Math., 169 (2002), 58.  doi: 10.1006/aima.2001.2054.  Google Scholar

[21]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps,, Ergod. Th. Dynam. Sys., 17 (1997), 147.  doi: 10.1017/S0143385797060987.  Google Scholar

[22]

M. Kesseböhmer, Large deviation for weak Gibbs measures and multifractal spectra,, Nonlinearity, 14 (2001), 395.  doi: 10.1088/0951-7715/14/2/312.  Google Scholar

[23]

M. Kesseböhmer and B. Stratmann, A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups,, Ergod. Th. Dynam. Sys., 24 (2004), 141.   Google Scholar

[24]

N. G. Makarov, Fine structure of harmonic measure,, St. Peterburg Math. J., 10 (1999), 217.   Google Scholar

[25]

A. Mummert, The thermodynamic formalism for almost-additive sequences,, Discrete Contin. Dyn. Syst., 16 (2006), 435.  doi: 10.3934/dcds.2006.16.435.  Google Scholar

[26]

E. Olivier, Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for $g$-measures,, Nonlinearity, 12 (1999), 1571.  doi: 10.1088/0951-7715/12/6/309.  Google Scholar

[27]

L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages,, J. Math. Pures Appl., 82 (2003), 1591.  doi: 10.1016/j.matpur.2003.09.007.  Google Scholar

[28]

Y. Peres, M. Rams, K. Simon and B. Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets,, Proc. Amer. Math. Soc., 129 (2001), 2689.  doi: 10.1090/S0002-9939-01-05969-X.  Google Scholar

[29]

Y. Pesin, "Dimension Theory in Dynamical Systems. Contemporary Views and Applications,", Chicago Lectures in Mathematics, (1997).   Google Scholar

[30]

Y. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions,, J. Statist. Phys., 86 (1997), 233.  doi: 10.1007/BF02180206.  Google Scholar

[31]

Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, Mathematical Foundation, and Examples,, Chaos, 7 (1997), 89.  doi: 10.1063/1.166242.  Google Scholar

[32]

D. A. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters,, Ergod. Th. Dynam. Sys., 9 (1989), 527.   Google Scholar

[33]

D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics,", Encyclopedia of Mathematics and its Applications, 5 (1978).   Google Scholar

[1]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[2]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[3]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[4]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[5]

Anna Mummert. The thermodynamic formalism for almost-additive sequences. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 435-454. doi: 10.3934/dcds.2006.16.435

[6]

Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343

[7]

Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315

[8]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[9]

Gaston N'Guerekata. On weak-almost periodic mild solutions of some linear abstract differential equations. Conference Publications, 2003, 2003 (Special) : 672-677. doi: 10.3934/proc.2003.2003.672

[10]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[11]

Alexander J. Zaslavski. Good programs in the RSS model without concavity of a utility function. Journal of Industrial & Management Optimization, 2006, 2 (4) : 399-423. doi: 10.3934/jimo.2006.2.399

[12]

Chuangxia Huang, Hua Zhang, Lihong Huang. Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3337-3349. doi: 10.3934/cpaa.2019150

[13]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[14]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[15]

Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073

[16]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[17]

Jialin Hong, Lijun Miao, Liying Zhang. Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4295-4315. doi: 10.3934/dcdsb.2019120

[18]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[19]

Michael Kühn. Power- and Log-concavity of viscosity solutions to some elliptic Dirichlet problems. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2773-2788. doi: 10.3934/cpaa.2018131

[20]

Vaughn Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electronic Research Announcements, 2010, 17: 1-11. doi: 10.3934/era.2010.17.1

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]