Citation: |
[1] |
A. Ambrosetti and M. Struwe, A note on the problem $-\Delta u=\lambda u+u|u| ^{2^\mathbf{star}-2}$, Manuscripta Math., 54 (1986), 373-379.doi: 10.1007/BF01168482. |
[2] |
V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.doi: 10.1007/BF00282048. |
[3] |
A. Bahri and P.-L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math., 41 (1988), 1027-1037.doi: 10.1002/cpa.3160410803. |
[4] |
A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365-413. |
[5] |
A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbbR^N$, Rev. Mat. Iberoamericana, 6 (1990), 1-15. |
[6] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405. |
[7] |
G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 341-350. |
[8] |
K. Chen and C. Peng, Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear elliptic problems, J. Differential Equations, 240 (2007), 58-91.doi: 10.1016/j.jde.2007.05.023. |
[9] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.doi: 10.1007/BF00282325. |
[10] |
D. Cao and H. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbbR^N$, Proc. Roy. Soc. Edinburgh Sect., A 126 (1996), 443-463. |
[11] |
Y. Deng, Existence of multiple positive solutions for a semilinear equation with critical exponent, Proc. Roy. Soc. Edinburgh Sect., A 122 (1992), 161-175. |
[12] |
Y. B. Deng, Q. Gao and D. D. Zhang, Nodal Solutions for Laplace Equations with Critical Sobolev and Hardy Exponents on $\mathbbR$, Discrete and Continuous Dynamical Systems (DCDS-A), 19 (2007), 211-233. |
[13] |
Y. Deng and Y. Li, Existence and bifurcation of the positive solutions for a semilinear equation with critical exponent, J. Differential Equations, 130 (1996), 179-200.doi: 10.1006/jdeq.1996.0138. |
[14] |
Y. Deng, Z. Guo and G. Wang, Nodal solutions for $p$-Laplace equations with critical growth, Nonlinear Anal. TMA., 54 (2003), 1121-1151.doi: 10.1016/S0362-546X(03)00129-9. |
[15] |
Y. Deng, Y. Ma and X. Zhao, Existence and properties of multiple positive solutions for semi-linear equations with critical exponents, Rocky Mountain J. Math., 35 (2005), 1479-1512.doi: 10.1216/rmjm/1181069647. |
[16] |
Y. Deng, L. Jin and S. Peng, Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, Commun. Math. Sci,. 9 (2011), 859-878. |
[17] |
G. Cerami and R. Molle, On some Schrodinger equations with non regular potential at infinity, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 827-844. |
[18] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125. |
[19] |
D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equation of Second Order," Springer-Verlag, Berlin, 1983. |
[20] |
J. Graham-Eagle, Monotone method for semilinear elliptic equations in unbounded domains, J. Math. Anal. Appl., 137 (1989), 122-131.doi: 10.1016/0022-247X(89)90276-X. |
[21] |
N. Hirano, Existence of entire positive solutions for nonhomogeneous elliptic equations, Nonlinear Anal., 29 (1997), 889-901.doi: 10.1016/S0362-546X(96)00176-9. |
[22] |
L. Jeanjean, Two positive solutions for a class of nonhomogeneous elliptic equations, Differential Integral Equations, 10 (1997), 609-624. |
[23] |
C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 469-493. |
[24] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations, The limit case. I. Rev. Mat. Iberoamericana, 1 (1985), 145-201. |
[25] |
J. Yang, Positive solutions of semilinear elliptic problems in exterior domains, J. Differential Equations, 106 (1993), 40-69.doi: 10.1006/jdeq.1993.1098. |
[26] |
X. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Differential Equations, 92 (1991), 163-178.doi: 10.1016/0022-0396(91)90045-B. |
[27] |
X. Zhu and D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (1989), 307-328. |
[28] |
X. Zhu and H. Zhou, Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 301-318. |