\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent

Abstract Related Papers Cited by
  • In this paper, we consider the following problem $$ \left\{ \begin{array}{ll} -\Delta u+u=u^{2^{*}-1}+\lambda(f(x,u)+h(x))\ \ \hbox{in}\ \mathbb{R}^{N},\\ u\in H^{1}(\mathbb{R}^{N}),\ \ u>0 \ \hbox{in}\ \mathbb{R}^{N}, \end{array} \right. (\star) $$ where $\lambda>0$ is a parameter, $2^* =\frac {2N}{N-2}$ is the critical Sobolev exponent and $N>4$, $f(x,t)$ and $h(x)$ are some given functions. We prove that there exists $0<\lambda^{*}<+\infty$ such that $(\star)$ has exactly two positive solutions for $\lambda\in(0,\lambda^{*})$ by Barrier method and Mountain Pass Lemma and no positive solutions for $\lambda >\lambda^*$. Moreover, if $\lambda=\lambda^*$, $(\star)$ has a unique solution $(\lambda^{*}, u_{\lambda^{*}})$, which means that $(\lambda^{*}, u_{\lambda^{*}})$ is a turning point in $H^{1}(\mathbb{R}^{N})$ for problem $(\star)$.
    Mathematics Subject Classification: 35J65, 35J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and M. Struwe, A note on the problem $-\Delta u=\lambda u+u|u| ^{2^\mathbf{star}-2}$, Manuscripta Math., 54 (1986), 373-379.doi: 10.1007/BF01168482.

    [2]

    V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.doi: 10.1007/BF00282048.

    [3]

    A. Bahri and P.-L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math., 41 (1988), 1027-1037.doi: 10.1002/cpa.3160410803.

    [4]

    A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365-413.

    [5]

    A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbbR^N$, Rev. Mat. Iberoamericana, 6 (1990), 1-15.

    [6]

    H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405.

    [7]

    G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 341-350.

    [8]

    K. Chen and C. Peng, Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear elliptic problems, J. Differential Equations, 240 (2007), 58-91.doi: 10.1016/j.jde.2007.05.023.

    [9]

    M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.doi: 10.1007/BF00282325.

    [10]

    D. Cao and H. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbbR^N$, Proc. Roy. Soc. Edinburgh Sect., A 126 (1996), 443-463.

    [11]

    Y. Deng, Existence of multiple positive solutions for a semilinear equation with critical exponent, Proc. Roy. Soc. Edinburgh Sect., A 122 (1992), 161-175.

    [12]

    Y. B. Deng, Q. Gao and D. D. Zhang, Nodal Solutions for Laplace Equations with Critical Sobolev and Hardy Exponents on $\mathbbR$, Discrete and Continuous Dynamical Systems (DCDS-A), 19 (2007), 211-233.

    [13]

    Y. Deng and Y. Li, Existence and bifurcation of the positive solutions for a semilinear equation with critical exponent, J. Differential Equations, 130 (1996), 179-200.doi: 10.1006/jdeq.1996.0138.

    [14]

    Y. Deng, Z. Guo and G. Wang, Nodal solutions for $p$-Laplace equations with critical growth, Nonlinear Anal. TMA., 54 (2003), 1121-1151.doi: 10.1016/S0362-546X(03)00129-9.

    [15]

    Y. Deng, Y. Ma and X. Zhao, Existence and properties of multiple positive solutions for semi-linear equations with critical exponents, Rocky Mountain J. Math., 35 (2005), 1479-1512.doi: 10.1216/rmjm/1181069647.

    [16]

    Y. Deng, L. Jin and S. Peng, Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, Commun. Math. Sci,. 9 (2011), 859-878.

    [17]

    G. Cerami and R. Molle, On some Schrodinger equations with non regular potential at infinity, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 827-844.

    [18]

    B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125.

    [19]

    D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equation of Second Order," Springer-Verlag, Berlin, 1983.

    [20]

    J. Graham-Eagle, Monotone method for semilinear elliptic equations in unbounded domains, J. Math. Anal. Appl., 137 (1989), 122-131.doi: 10.1016/0022-247X(89)90276-X.

    [21]

    N. Hirano, Existence of entire positive solutions for nonhomogeneous elliptic equations, Nonlinear Anal., 29 (1997), 889-901.doi: 10.1016/S0362-546X(96)00176-9.

    [22]

    L. Jeanjean, Two positive solutions for a class of nonhomogeneous elliptic equations, Differential Integral Equations, 10 (1997), 609-624.

    [23]

    C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 469-493.

    [24]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations, The limit case. I. Rev. Mat. Iberoamericana, 1 (1985), 145-201.

    [25]

    J. Yang, Positive solutions of semilinear elliptic problems in exterior domains, J. Differential Equations, 106 (1993), 40-69.doi: 10.1006/jdeq.1993.1098.

    [26]

    X. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Differential Equations, 92 (1991), 163-178.doi: 10.1016/0022-0396(91)90045-B.

    [27]

    X. Zhu and D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (1989), 307-328.

    [28]

    X. Zhu and H. Zhou, Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 301-318.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return