• Previous Article
    Traveling wave solution for a lattice dynamical system with convolution type nonlinearity
  • DCDS Home
  • This Issue
  • Next Article
    Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation
January  2012, 32(1): 81-100. doi: 10.3934/dcds.2012.32.81

Lefschetz sequences and detecting periodic points

1. 

Department of Applied Mathematics, University of Agriculture in Krakow, Balicka 253c, 30-198 Kraków, Poland

2. 

Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland

Received  July 2010 Revised  December 2010 Published  September 2011

We introduce a dual sequence condition (DSC) for a discrete dynamical system given by a continuous map $f:X\to X$ of some metric space $X$. It is defined in terms of the Lefschetz sequence and its dual sequence of the endomorphism of a graded vector space of finite type associated to the dynamical system $f$. We prove the arithmetical properties of the dual Lefschetz sequence and we show some of its dynamical consequences, mainly concerning the topological methods for detecting chaotic dynamics.
Citation: Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81
References:
[1]

M. Aigner and G. M. Ziegler, "Proofs from the Book,", Third Edition, (2003).   Google Scholar

[2]

I. K. Babienko and S. A. Bogatyi, Behaviour of the index of periodic points under iterations of mapping,, Izv. Akad. Nauk SSSR Ser. Math., 55 (1991), 3.   Google Scholar

[3]

B. Banhelyi, T. Csendes and B. M. Garay, Optimization and the Miranda approach in detecting horseshoe-type chaos by computer,, Inter. J. Bifurcation and Chaos, 17 (2007), 735.  doi: 10.1142/S0218127407017549.  Google Scholar

[4]

F. Battelli and M. Feĉkan, Chaos arising near a topologically transversal homoclinic set,, Topol. Meth. Nonl. Anal., 20 (2002), 195.   Google Scholar

[5]

A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics,, J. Diff. Eq., 181 (2002), 419.   Google Scholar

[6]

S. N. Chow, J. Mallet-Paret and J. A. Yorke, A periodic orbit index which is a bifurcation invariant,, Lect. Notes in Math., 1007 (1983), 109.  doi: 10.1007/BFb0061414.  Google Scholar

[7]

M. Feckan, "Topological Degree Approach to Bifurcation Problems,", Series: Topological Fixed Point Theory and Its Applications, (2008).   Google Scholar

[8]

M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.   Google Scholar

[9]

J. Jezierski and W. Marzantowicz, Homotopy methods in topological fixed and periodic points theory,, Series: Topological Fixed Point Theory and Its Applications, 3 (2005).   Google Scholar

[10]

W. Marzantowicz and K. Wójcik, Periodic segment implies infinitely many periodic solutions,, Proc. American Math Society, 135 (2007), 2637.  doi: 10.1090/S0002-9939-07-08750-3.  Google Scholar

[11]

K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof,, Bull. American Math Society, 32 (1995), 66.  doi: 10.1090/S0273-0979-1995-00558-6.  Google Scholar

[12]

K. Mischaikow and M. Mrozek, Isolating neighborhoods and chaos,, Japan J. Indust. and Appl. Math., 12 (1995), 205.   Google Scholar

[13]

M. Mrozek, The method of topological sections in the rigorous numerics of dynamical systems,, Canadian Applied Mathemathics Quartely, 14 (2006), 209.   Google Scholar

[14]

M. Mrozek and K. Wójcik, Disrete version of a geometric method for detecting chaotic dynamics,, Topology Appl., 152 (2005), 70.  doi: 10.1016/j.topol.2004.08.015.  Google Scholar

[15]

P. Oprocha and P. Wilczyński, Distributional chaos via semiconjugacy,, Nonlinearity, 20 (2007), 2661.  doi: 10.1088/0951-7715/20/11/010.  Google Scholar

[16]

P. Oprocha and P. Wilczyński, Distributional chaos via isolating segments,, Discrete and Continuous Dynamical Systems Series B, 8 (2007), 347.  doi: 10.3934/dcdsb.2007.8.347.  Google Scholar

[17]

D. Papini and F. Zanolin, Some results on periodic points and chaotic dynamics arising from the study of the nonlinear Hill equation,, Rend. Semin. Mat. Univ. Politec. Torino, 65 (2007), 115.   Google Scholar

[18]

D. Papini and F. Zanolin, Fixed points, periodic points and coin-tossing sequences for mappings defined on two-dimensional cells,, Fixed Point Theory Appl., 2 (2004), 113.  doi: 10.1155/S1687182004401028.  Google Scholar

[19]

L. Pieniążek and K. Wójcik, Complicated dynamics in nonautonomous ODEs,, Univ. Iagel. Acta Math., XLI (2003), 163.   Google Scholar

[20]

M. Pireddu and F. Zanolin, Cutting surfaces and applications to periodic points and chaotic-like dynamics,, Topol. Methods Nonlinear Anal., 30 (2007), 279.   Google Scholar

[21]

J. C. Sprott, "Elegant Chaos. Algebraically Simple Chaotic Flows,", World Scientific Publishing, (2010).   Google Scholar

[22]

M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.  doi: 10.1016/0040-9383(74)90009-3.  Google Scholar

[23]

R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations,, Nonlinear Anal. TMA, 22 (1994), 707.  doi: 10.1016/0362-546X(94)90223-2.  Google Scholar

[24]

R. Srzednicki, Ważewski method and the Conley index,, Handbook of Dfferential Equations vol. \textbf{1} (2004), 1 (2004), 591.   Google Scholar

[25]

R. Srzednicki, On solutions of two-point boundary value problems inside isolating segments,, Topol. Methods Nonlinear Anal., 13 (1999), 73.   Google Scholar

[26]

Zhi-Wei Sun and R. Tauraso, Congruences for sums of binomial coefficients,, Journal of Number Theory, 126 (2007), 287.  doi: 10.1016/j.jnt.2007.01.002.  Google Scholar

[27]

R. Srzednicki and K. Wójcik, A geometric method for detecting chaotic dynamics,, J. Differential Equations, 135 (1997), 66.   Google Scholar

[28]

R. Srzednicki, K. Wójcik and P. Zgliczyński, Fixed point results based on the Ważewski method,, Handbook of topological fixed point theory, (2005), 905.   Google Scholar

[29]

K. Wójcik, On detecting periodic solutions and chaos in the time periodically forced ODEs,, Nonlinear Anal. TMA, 45 (2001), 19.  doi: 10.1016/S0362-546X(99)00327-2.  Google Scholar

[30]

K. Wójcik and P. Zgliczyński, Isolating segments, fixed point index, and symbolic dynamics,, J. Differential Equations, 161 (2000), 245.   Google Scholar

[31]

P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map,, Nonlinearity, 10 (1997), 243.  doi: 10.1088/0951-7715/10/1/016.  Google Scholar

show all references

References:
[1]

M. Aigner and G. M. Ziegler, "Proofs from the Book,", Third Edition, (2003).   Google Scholar

[2]

I. K. Babienko and S. A. Bogatyi, Behaviour of the index of periodic points under iterations of mapping,, Izv. Akad. Nauk SSSR Ser. Math., 55 (1991), 3.   Google Scholar

[3]

B. Banhelyi, T. Csendes and B. M. Garay, Optimization and the Miranda approach in detecting horseshoe-type chaos by computer,, Inter. J. Bifurcation and Chaos, 17 (2007), 735.  doi: 10.1142/S0218127407017549.  Google Scholar

[4]

F. Battelli and M. Feĉkan, Chaos arising near a topologically transversal homoclinic set,, Topol. Meth. Nonl. Anal., 20 (2002), 195.   Google Scholar

[5]

A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics,, J. Diff. Eq., 181 (2002), 419.   Google Scholar

[6]

S. N. Chow, J. Mallet-Paret and J. A. Yorke, A periodic orbit index which is a bifurcation invariant,, Lect. Notes in Math., 1007 (1983), 109.  doi: 10.1007/BFb0061414.  Google Scholar

[7]

M. Feckan, "Topological Degree Approach to Bifurcation Problems,", Series: Topological Fixed Point Theory and Its Applications, (2008).   Google Scholar

[8]

M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.   Google Scholar

[9]

J. Jezierski and W. Marzantowicz, Homotopy methods in topological fixed and periodic points theory,, Series: Topological Fixed Point Theory and Its Applications, 3 (2005).   Google Scholar

[10]

W. Marzantowicz and K. Wójcik, Periodic segment implies infinitely many periodic solutions,, Proc. American Math Society, 135 (2007), 2637.  doi: 10.1090/S0002-9939-07-08750-3.  Google Scholar

[11]

K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof,, Bull. American Math Society, 32 (1995), 66.  doi: 10.1090/S0273-0979-1995-00558-6.  Google Scholar

[12]

K. Mischaikow and M. Mrozek, Isolating neighborhoods and chaos,, Japan J. Indust. and Appl. Math., 12 (1995), 205.   Google Scholar

[13]

M. Mrozek, The method of topological sections in the rigorous numerics of dynamical systems,, Canadian Applied Mathemathics Quartely, 14 (2006), 209.   Google Scholar

[14]

M. Mrozek and K. Wójcik, Disrete version of a geometric method for detecting chaotic dynamics,, Topology Appl., 152 (2005), 70.  doi: 10.1016/j.topol.2004.08.015.  Google Scholar

[15]

P. Oprocha and P. Wilczyński, Distributional chaos via semiconjugacy,, Nonlinearity, 20 (2007), 2661.  doi: 10.1088/0951-7715/20/11/010.  Google Scholar

[16]

P. Oprocha and P. Wilczyński, Distributional chaos via isolating segments,, Discrete and Continuous Dynamical Systems Series B, 8 (2007), 347.  doi: 10.3934/dcdsb.2007.8.347.  Google Scholar

[17]

D. Papini and F. Zanolin, Some results on periodic points and chaotic dynamics arising from the study of the nonlinear Hill equation,, Rend. Semin. Mat. Univ. Politec. Torino, 65 (2007), 115.   Google Scholar

[18]

D. Papini and F. Zanolin, Fixed points, periodic points and coin-tossing sequences for mappings defined on two-dimensional cells,, Fixed Point Theory Appl., 2 (2004), 113.  doi: 10.1155/S1687182004401028.  Google Scholar

[19]

L. Pieniążek and K. Wójcik, Complicated dynamics in nonautonomous ODEs,, Univ. Iagel. Acta Math., XLI (2003), 163.   Google Scholar

[20]

M. Pireddu and F. Zanolin, Cutting surfaces and applications to periodic points and chaotic-like dynamics,, Topol. Methods Nonlinear Anal., 30 (2007), 279.   Google Scholar

[21]

J. C. Sprott, "Elegant Chaos. Algebraically Simple Chaotic Flows,", World Scientific Publishing, (2010).   Google Scholar

[22]

M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.  doi: 10.1016/0040-9383(74)90009-3.  Google Scholar

[23]

R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations,, Nonlinear Anal. TMA, 22 (1994), 707.  doi: 10.1016/0362-546X(94)90223-2.  Google Scholar

[24]

R. Srzednicki, Ważewski method and the Conley index,, Handbook of Dfferential Equations vol. \textbf{1} (2004), 1 (2004), 591.   Google Scholar

[25]

R. Srzednicki, On solutions of two-point boundary value problems inside isolating segments,, Topol. Methods Nonlinear Anal., 13 (1999), 73.   Google Scholar

[26]

Zhi-Wei Sun and R. Tauraso, Congruences for sums of binomial coefficients,, Journal of Number Theory, 126 (2007), 287.  doi: 10.1016/j.jnt.2007.01.002.  Google Scholar

[27]

R. Srzednicki and K. Wójcik, A geometric method for detecting chaotic dynamics,, J. Differential Equations, 135 (1997), 66.   Google Scholar

[28]

R. Srzednicki, K. Wójcik and P. Zgliczyński, Fixed point results based on the Ważewski method,, Handbook of topological fixed point theory, (2005), 905.   Google Scholar

[29]

K. Wójcik, On detecting periodic solutions and chaos in the time periodically forced ODEs,, Nonlinear Anal. TMA, 45 (2001), 19.  doi: 10.1016/S0362-546X(99)00327-2.  Google Scholar

[30]

K. Wójcik and P. Zgliczyński, Isolating segments, fixed point index, and symbolic dynamics,, J. Differential Equations, 161 (2000), 245.   Google Scholar

[31]

P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map,, Nonlinearity, 10 (1997), 243.  doi: 10.1088/0951-7715/10/1/016.  Google Scholar

[1]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[2]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[3]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[4]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[5]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[6]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[7]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[12]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[13]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[14]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[15]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[16]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[17]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[18]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[19]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[20]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]