-
Previous Article
Traveling wave solution for a lattice dynamical system with convolution type nonlinearity
- DCDS Home
- This Issue
-
Next Article
Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation
Lefschetz sequences and detecting periodic points
1. | Department of Applied Mathematics, University of Agriculture in Krakow, Balicka 253c, 30-198 Kraków, Poland |
2. | Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland |
References:
[1] |
M. Aigner and G. M. Ziegler, "Proofs from the Book,", Third Edition, (2003). Google Scholar |
[2] |
I. K. Babienko and S. A. Bogatyi, Behaviour of the index of periodic points under iterations of mapping,, Izv. Akad. Nauk SSSR Ser. Math., 55 (1991), 3. Google Scholar |
[3] |
B. Banhelyi, T. Csendes and B. M. Garay, Optimization and the Miranda approach in detecting horseshoe-type chaos by computer,, Inter. J. Bifurcation and Chaos, 17 (2007), 735.
doi: 10.1142/S0218127407017549. |
[4] |
F. Battelli and M. Feĉkan, Chaos arising near a topologically transversal homoclinic set,, Topol. Meth. Nonl. Anal., 20 (2002), 195.
|
[5] |
A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics,, J. Diff. Eq., 181 (2002), 419.
|
[6] |
S. N. Chow, J. Mallet-Paret and J. A. Yorke, A periodic orbit index which is a bifurcation invariant,, Lect. Notes in Math., 1007 (1983), 109.
doi: 10.1007/BFb0061414. |
[7] |
M. Feckan, "Topological Degree Approach to Bifurcation Problems,", Series: Topological Fixed Point Theory and Its Applications, (2008).
|
[8] |
M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.
|
[9] |
J. Jezierski and W. Marzantowicz, Homotopy methods in topological fixed and periodic points theory,, Series: Topological Fixed Point Theory and Its Applications, 3 (2005).
|
[10] |
W. Marzantowicz and K. Wójcik, Periodic segment implies infinitely many periodic solutions,, Proc. American Math Society, 135 (2007), 2637.
doi: 10.1090/S0002-9939-07-08750-3. |
[11] |
K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof,, Bull. American Math Society, 32 (1995), 66.
doi: 10.1090/S0273-0979-1995-00558-6. |
[12] |
K. Mischaikow and M. Mrozek, Isolating neighborhoods and chaos,, Japan J. Indust. and Appl. Math., 12 (1995), 205.
|
[13] |
M. Mrozek, The method of topological sections in the rigorous numerics of dynamical systems,, Canadian Applied Mathemathics Quartely, 14 (2006), 209.
|
[14] |
M. Mrozek and K. Wójcik, Disrete version of a geometric method for detecting chaotic dynamics,, Topology Appl., 152 (2005), 70.
doi: 10.1016/j.topol.2004.08.015. |
[15] |
P. Oprocha and P. Wilczyński, Distributional chaos via semiconjugacy,, Nonlinearity, 20 (2007), 2661.
doi: 10.1088/0951-7715/20/11/010. |
[16] |
P. Oprocha and P. Wilczyński, Distributional chaos via isolating segments,, Discrete and Continuous Dynamical Systems Series B, 8 (2007), 347.
doi: 10.3934/dcdsb.2007.8.347. |
[17] |
D. Papini and F. Zanolin, Some results on periodic points and chaotic dynamics arising from the study of the nonlinear Hill equation,, Rend. Semin. Mat. Univ. Politec. Torino, 65 (2007), 115.
|
[18] |
D. Papini and F. Zanolin, Fixed points, periodic points and coin-tossing sequences for mappings defined on two-dimensional cells,, Fixed Point Theory Appl., 2 (2004), 113.
doi: 10.1155/S1687182004401028. |
[19] |
L. Pieniążek and K. Wójcik, Complicated dynamics in nonautonomous ODEs,, Univ. Iagel. Acta Math., XLI (2003), 163.
|
[20] |
M. Pireddu and F. Zanolin, Cutting surfaces and applications to periodic points and chaotic-like dynamics,, Topol. Methods Nonlinear Anal., 30 (2007), 279.
|
[21] |
J. C. Sprott, "Elegant Chaos. Algebraically Simple Chaotic Flows,", World Scientific Publishing, (2010).
|
[22] |
M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.
doi: 10.1016/0040-9383(74)90009-3. |
[23] |
R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations,, Nonlinear Anal. TMA, 22 (1994), 707.
doi: 10.1016/0362-546X(94)90223-2. |
[24] |
R. Srzednicki, Ważewski method and the Conley index,, Handbook of Dfferential Equations vol. \textbf{1} (2004), 1 (2004), 591.
|
[25] |
R. Srzednicki, On solutions of two-point boundary value problems inside isolating segments,, Topol. Methods Nonlinear Anal., 13 (1999), 73.
|
[26] |
Zhi-Wei Sun and R. Tauraso, Congruences for sums of binomial coefficients,, Journal of Number Theory, 126 (2007), 287.
doi: 10.1016/j.jnt.2007.01.002. |
[27] |
R. Srzednicki and K. Wójcik, A geometric method for detecting chaotic dynamics,, J. Differential Equations, 135 (1997), 66.
|
[28] |
R. Srzednicki, K. Wójcik and P. Zgliczyński, Fixed point results based on the Ważewski method,, Handbook of topological fixed point theory, (2005), 905.
|
[29] |
K. Wójcik, On detecting periodic solutions and chaos in the time periodically forced ODEs,, Nonlinear Anal. TMA, 45 (2001), 19.
doi: 10.1016/S0362-546X(99)00327-2. |
[30] |
K. Wójcik and P. Zgliczyński, Isolating segments, fixed point index, and symbolic dynamics,, J. Differential Equations, 161 (2000), 245.
|
[31] |
P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map,, Nonlinearity, 10 (1997), 243.
doi: 10.1088/0951-7715/10/1/016. |
show all references
References:
[1] |
M. Aigner and G. M. Ziegler, "Proofs from the Book,", Third Edition, (2003). Google Scholar |
[2] |
I. K. Babienko and S. A. Bogatyi, Behaviour of the index of periodic points under iterations of mapping,, Izv. Akad. Nauk SSSR Ser. Math., 55 (1991), 3. Google Scholar |
[3] |
B. Banhelyi, T. Csendes and B. M. Garay, Optimization and the Miranda approach in detecting horseshoe-type chaos by computer,, Inter. J. Bifurcation and Chaos, 17 (2007), 735.
doi: 10.1142/S0218127407017549. |
[4] |
F. Battelli and M. Feĉkan, Chaos arising near a topologically transversal homoclinic set,, Topol. Meth. Nonl. Anal., 20 (2002), 195.
|
[5] |
A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics,, J. Diff. Eq., 181 (2002), 419.
|
[6] |
S. N. Chow, J. Mallet-Paret and J. A. Yorke, A periodic orbit index which is a bifurcation invariant,, Lect. Notes in Math., 1007 (1983), 109.
doi: 10.1007/BFb0061414. |
[7] |
M. Feckan, "Topological Degree Approach to Bifurcation Problems,", Series: Topological Fixed Point Theory and Its Applications, (2008).
|
[8] |
M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.
|
[9] |
J. Jezierski and W. Marzantowicz, Homotopy methods in topological fixed and periodic points theory,, Series: Topological Fixed Point Theory and Its Applications, 3 (2005).
|
[10] |
W. Marzantowicz and K. Wójcik, Periodic segment implies infinitely many periodic solutions,, Proc. American Math Society, 135 (2007), 2637.
doi: 10.1090/S0002-9939-07-08750-3. |
[11] |
K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof,, Bull. American Math Society, 32 (1995), 66.
doi: 10.1090/S0273-0979-1995-00558-6. |
[12] |
K. Mischaikow and M. Mrozek, Isolating neighborhoods and chaos,, Japan J. Indust. and Appl. Math., 12 (1995), 205.
|
[13] |
M. Mrozek, The method of topological sections in the rigorous numerics of dynamical systems,, Canadian Applied Mathemathics Quartely, 14 (2006), 209.
|
[14] |
M. Mrozek and K. Wójcik, Disrete version of a geometric method for detecting chaotic dynamics,, Topology Appl., 152 (2005), 70.
doi: 10.1016/j.topol.2004.08.015. |
[15] |
P. Oprocha and P. Wilczyński, Distributional chaos via semiconjugacy,, Nonlinearity, 20 (2007), 2661.
doi: 10.1088/0951-7715/20/11/010. |
[16] |
P. Oprocha and P. Wilczyński, Distributional chaos via isolating segments,, Discrete and Continuous Dynamical Systems Series B, 8 (2007), 347.
doi: 10.3934/dcdsb.2007.8.347. |
[17] |
D. Papini and F. Zanolin, Some results on periodic points and chaotic dynamics arising from the study of the nonlinear Hill equation,, Rend. Semin. Mat. Univ. Politec. Torino, 65 (2007), 115.
|
[18] |
D. Papini and F. Zanolin, Fixed points, periodic points and coin-tossing sequences for mappings defined on two-dimensional cells,, Fixed Point Theory Appl., 2 (2004), 113.
doi: 10.1155/S1687182004401028. |
[19] |
L. Pieniążek and K. Wójcik, Complicated dynamics in nonautonomous ODEs,, Univ. Iagel. Acta Math., XLI (2003), 163.
|
[20] |
M. Pireddu and F. Zanolin, Cutting surfaces and applications to periodic points and chaotic-like dynamics,, Topol. Methods Nonlinear Anal., 30 (2007), 279.
|
[21] |
J. C. Sprott, "Elegant Chaos. Algebraically Simple Chaotic Flows,", World Scientific Publishing, (2010).
|
[22] |
M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.
doi: 10.1016/0040-9383(74)90009-3. |
[23] |
R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations,, Nonlinear Anal. TMA, 22 (1994), 707.
doi: 10.1016/0362-546X(94)90223-2. |
[24] |
R. Srzednicki, Ważewski method and the Conley index,, Handbook of Dfferential Equations vol. \textbf{1} (2004), 1 (2004), 591.
|
[25] |
R. Srzednicki, On solutions of two-point boundary value problems inside isolating segments,, Topol. Methods Nonlinear Anal., 13 (1999), 73.
|
[26] |
Zhi-Wei Sun and R. Tauraso, Congruences for sums of binomial coefficients,, Journal of Number Theory, 126 (2007), 287.
doi: 10.1016/j.jnt.2007.01.002. |
[27] |
R. Srzednicki and K. Wójcik, A geometric method for detecting chaotic dynamics,, J. Differential Equations, 135 (1997), 66.
|
[28] |
R. Srzednicki, K. Wójcik and P. Zgliczyński, Fixed point results based on the Ważewski method,, Handbook of topological fixed point theory, (2005), 905.
|
[29] |
K. Wójcik, On detecting periodic solutions and chaos in the time periodically forced ODEs,, Nonlinear Anal. TMA, 45 (2001), 19.
doi: 10.1016/S0362-546X(99)00327-2. |
[30] |
K. Wójcik and P. Zgliczyński, Isolating segments, fixed point index, and symbolic dynamics,, J. Differential Equations, 161 (2000), 245.
|
[31] |
P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map,, Nonlinearity, 10 (1997), 243.
doi: 10.1088/0951-7715/10/1/016. |
[1] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[2] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[3] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[4] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[5] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[6] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[7] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[8] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[9] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[10] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[11] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[12] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[13] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[14] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[15] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[16] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[17] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[18] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[19] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[20] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]