\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lefschetz sequences and detecting periodic points

Abstract Related Papers Cited by
  • We introduce a dual sequence condition (DSC) for a discrete dynamical system given by a continuous map $f:X\to X$ of some metric space $X$. It is defined in terms of the Lefschetz sequence and its dual sequence of the endomorphism of a graded vector space of finite type associated to the dynamical system $f$. We prove the arithmetical properties of the dual Lefschetz sequence and we show some of its dynamical consequences, mainly concerning the topological methods for detecting chaotic dynamics.
    Mathematics Subject Classification: Primary: 37B30, 37B10; Secondary: 37B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Aigner and G. M. Ziegler, "Proofs from the Book," Third Edition, Springer, 2003.

    [2]

    I. K. Babienko and S. A. Bogatyi, Behaviour of the index of periodic points under iterations of mapping, Izv. Akad. Nauk SSSR Ser. Math., 55 (1991), 3-31.

    [3]

    B. Banhelyi, T. Csendes and B. M. Garay, Optimization and the Miranda approach in detecting horseshoe-type chaos by computer, Inter. J. Bifurcation and Chaos, 17 (2007), 735-747.doi: 10.1142/S0218127407017549.

    [4]

    F. Battelli and M. Feĉkan, Chaos arising near a topologically transversal homoclinic set, Topol. Meth. Nonl. Anal., 20 (2002), 195-215.

    [5]

    A. Capietto, W. Dambrosio and D. Papini, Superlinear indefinite equations on the real line and chaotic dynamics, J. Diff. Eq., 181 (2002), 419-438.

    [6]

    S. N. Chow, J. Mallet-Paret and J. A. Yorke, A periodic orbit index which is a bifurcation invariant, Lect. Notes in Math., 1007 (1983), 109-131.doi: 10.1007/BFb0061414.

    [7]

    M. Feckan, "Topological Degree Approach to Bifurcation Problems," Series: Topological Fixed Point Theory and Its Applications, Springer Science and Business Media, 2008.

    [8]

    M. Gidea and P. Zgliczyński, Covering relations for multidimensional dynamical systems, J. Differential Equations, 202 (2004), 32-58.

    [9]

    J. Jezierski and W. Marzantowicz, Homotopy methods in topological fixed and periodic points theory, Series: Topological Fixed Point Theory and Its Applications, vol. 3, Springer, (2005).

    [10]

    W. Marzantowicz and K. Wójcik, Periodic segment implies infinitely many periodic solutions, Proc. American Math Society, 135 (2007), 2637-2647.doi: 10.1090/S0002-9939-07-08750-3.

    [11]

    K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof, Bull. American Math Society, 32 (1995), 66-72.doi: 10.1090/S0273-0979-1995-00558-6.

    [12]

    K. Mischaikow and M. Mrozek, Isolating neighborhoods and chaos, Japan J. Indust. and Appl. Math., 12 (1995), 205-236.

    [13]

    M. Mrozek, The method of topological sections in the rigorous numerics of dynamical systems, Canadian Applied Mathemathics Quartely, 14 (2006), 209-222.

    [14]

    M. Mrozek and K. Wójcik, Disrete version of a geometric method for detecting chaotic dynamics, Topology Appl., 152 (2005), 70-82.doi: 10.1016/j.topol.2004.08.015.

    [15]

    P. Oprocha and P. Wilczyński, Distributional chaos via semiconjugacy, Nonlinearity, 20 (2007), 2661-2679.doi: 10.1088/0951-7715/20/11/010.

    [16]

    P. Oprocha and P. Wilczyński, Distributional chaos via isolating segments, Discrete and Continuous Dynamical Systems Series B, 8 (2007), 347-356.doi: 10.3934/dcdsb.2007.8.347.

    [17]

    D. Papini and F. Zanolin, Some results on periodic points and chaotic dynamics arising from the study of the nonlinear Hill equation, Rend. Semin. Mat. Univ. Politec. Torino, 65 (2007), 115-157.

    [18]

    D. Papini and F. Zanolin, Fixed points, periodic points and coin-tossing sequences for mappings defined on two-dimensional cells, Fixed Point Theory Appl., 2 (2004), 113-134.doi: 10.1155/S1687182004401028.

    [19]

    L. Pieniążek and K. Wójcik, Complicated dynamics in nonautonomous ODEs, Univ. Iagel. Acta Math., XLI (2003), 163-179.

    [20]

    M. Pireddu and F. Zanolin, Cutting surfaces and applications to periodic points and chaotic-like dynamics, Topol. Methods Nonlinear Anal., 30 (2007), 279-319.

    [21]

    J. C. Sprott, "Elegant Chaos. Algebraically Simple Chaotic Flows," World Scientific Publishing, 2010.

    [22]

    M. Shub and P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps, Topology, 13 (1974), 189-191.doi: 10.1016/0040-9383(74)90009-3.

    [23]

    R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal. TMA, 22 (1994), 707-737.doi: 10.1016/0362-546X(94)90223-2.

    [24]

    R. Srzednicki, Ważewski method and the Conley index, Handbook of Dfferential Equations vol. 1 (2004), Edited by A. Canada, P. Drabek, A. Fonda, 591-684.

    [25]

    R. Srzednicki, On solutions of two-point boundary value problems inside isolating segments, Topol. Methods Nonlinear Anal., 13 (1999), 73-89.

    [26]

    Zhi-Wei Sun and R. Tauraso, Congruences for sums of binomial coefficients, Journal of Number Theory, 126 (2007), 287-296.doi: 10.1016/j.jnt.2007.01.002.

    [27]

    R. Srzednicki and K. Wójcik, A geometric method for detecting chaotic dynamics, J. Differential Equations, 135 (1997), 66-82.

    [28]

    R. Srzednicki, K. Wójcik and P. Zgliczyński, Fixed point results based on the Ważewski method, Handbook of topological fixed point theory, Ed: R. Brown, M. Furi, L. Górniewicz, B. Jiang, (2005), 905-943.

    [29]

    K. Wójcik, On detecting periodic solutions and chaos in the time periodically forced ODEs, Nonlinear Anal. TMA, 45 (2001), 19-27.doi: 10.1016/S0362-546X(99)00327-2.

    [30]

    K. Wójcik and P. Zgliczyński, Isolating segments, fixed point index, and symbolic dynamics, J. Differential Equations, 161 (2000), 245-288.

    [31]

    P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity, 10 (1997), 243-252.doi: 10.1088/0951-7715/10/1/016.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return