• Previous Article
    Global solutions for a semilinear heat equation in the exterior domain of a compact set
  • DCDS Home
  • This Issue
  • Next Article
    Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent
March  2012, 32(3): 827-846. doi: 10.3934/dcds.2012.32.827

Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations

1. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068

Received  March 2010 Revised  July 2011 Published  October 2011

We study blow-up, global existence and standing waves for the nonlinear Schrödinger equations with two-dimensional magnetic field in a cold plasma. Under certain conditions on initial data and initial energy, we derive finite time blow-up phenomena of the solutions to the equations under study. Using compactness and Lagrange multiplier method, we establish the existence of standing waves. Finally, by introducing invariant manifolds and utilizing potential well argument as well as concavity method, we obtain the sharp threshold for global existence and blowup.
Citation: Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827
References:
[1]

H. Berestycki, T. Gallouët and O. Kavian, Équations de champs scalaires euclidiens nonlinéaires daus de plan,, C. R. Acad. Sci. Paris. Série I Math., 297 (1983), 307.   Google Scholar

[2]

H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires,, C. R. Acad. Sci. Paris Sér. I. Math., 293 (1981), 489.   Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rat. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[4]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions,, Arch. Rat. Mech. Anal., 82 (1983), 347.   Google Scholar

[5]

T. Cazenave, "An Introduction to Nonlinear Schrödinger Equations,", Textos de Metodos Matematicos, (1989).   Google Scholar

[6]

Z. H. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, Commun. Math. Phys., 283 (2008), 93.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[7]

R. T. Glassey, On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations,, J. Math. Phys., 18 (1977), 1794.  doi: 10.1063/1.523491.  Google Scholar

[8]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I, II. The Cauchy problem, general case. Scattering theory, general case,, J. Funct. Anal., 32 (1979), 1.  doi: 10.1016/0022-1236(79)90076-4.  Google Scholar

[9]

M. Kono, M. M. Skoric and D. Ter Haar, Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma,, J. Plasma Phys., 26 (1981), 123.  doi: 10.1017/S0022377800010588.  Google Scholar

[10]

T. Kato, On nonlinear Schrödinger equations,, Ann. Inst. Henri Poincaré Physique Théorique, 46 (1987), 113.   Google Scholar

[11]

T. Kato and G. Ponce, Commutator estimates for the Euler and Navier-Stokes equations,, Commun. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[12]

C. Laurey, The Cauchy problem for a generalized Zakharov system,, Diffe. Integral Equ., 8 (1995), 105.   Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{\mathcalt\mathcalt}=-Au-F(u)$,, Transactions of the American Mathematical Society, 192 (1974), 1.  doi: 10.2307/1996814.  Google Scholar

[14]

C. T. Mckinstrie and D. A. Russell, Nonlinear focusing of coupled waves,, Phys. Rev. Lett., 61 (1988), 2929.  doi: 10.1103/PhysRevLett.61.2929.  Google Scholar

[15]

C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations,", Second edition, (2004).   Google Scholar

[16]

C. X. Miao, "The Modern Method of Nonlinear Wave Equations,", Lectures in Contemporary Mathematics, (2005).   Google Scholar

[17]

C. X. Miao and B. Zhang, "Harmonic Analysis Method of Partial Differential Equations,", Second edition, (2008).   Google Scholar

[18]

L. Nirenberg, On elliptic partial differential equations,, Ann. della Scuola Norm. Sup. Pisa, 13 (1959), 115.   Google Scholar

[19]

M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system,, Ann. Inst. Henri. Poincaré Phys. Théor., 62 (1995), 69.   Google Scholar

[20]

M. Ohta, Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in $\mathbbR^2$,, Ann. Inst. Henri. Poincaré Phys. Théor., 63 (1995), 111.   Google Scholar

[21]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^{1}$ solution for the nonlinear Schrödinger equation,, J. Diff. Eq., 92 (1991), 317.   Google Scholar

[22]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^{1}$ solutions for the one-dimension nonlinear Schrödinger equation with critical power nonlinearity,, Proc. Amer. Math. Soc., 111 (1991), 487.   Google Scholar

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel Journal of Mathematics, 22 (1975), 273.  doi: 10.1007/BF02761595.  Google Scholar

[24]

I. Segal, Nonlinear semi-groups,, Ann. Math., 78 (1963), 339.  doi: 10.2307/1970347.  Google Scholar

[25]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[26]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (): 567.   Google Scholar

[27]

V. E. Zakharov, The collapse of Langmuir waves,, Soviet Phys. JETP, 35 (1972), 908.   Google Scholar

[28]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations,, Nonlinear Analysis, 48 (2002), 191.  doi: 10.1016/S0362-546X(00)00180-2.  Google Scholar

[29]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,, Commun. in PDE, 30 (2005), 1429.  doi: 10.1080/03605300500299539.  Google Scholar

show all references

References:
[1]

H. Berestycki, T. Gallouët and O. Kavian, Équations de champs scalaires euclidiens nonlinéaires daus de plan,, C. R. Acad. Sci. Paris. Série I Math., 297 (1983), 307.   Google Scholar

[2]

H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires,, C. R. Acad. Sci. Paris Sér. I. Math., 293 (1981), 489.   Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rat. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[4]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions,, Arch. Rat. Mech. Anal., 82 (1983), 347.   Google Scholar

[5]

T. Cazenave, "An Introduction to Nonlinear Schrödinger Equations,", Textos de Metodos Matematicos, (1989).   Google Scholar

[6]

Z. H. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, Commun. Math. Phys., 283 (2008), 93.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[7]

R. T. Glassey, On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations,, J. Math. Phys., 18 (1977), 1794.  doi: 10.1063/1.523491.  Google Scholar

[8]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I, II. The Cauchy problem, general case. Scattering theory, general case,, J. Funct. Anal., 32 (1979), 1.  doi: 10.1016/0022-1236(79)90076-4.  Google Scholar

[9]

M. Kono, M. M. Skoric and D. Ter Haar, Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma,, J. Plasma Phys., 26 (1981), 123.  doi: 10.1017/S0022377800010588.  Google Scholar

[10]

T. Kato, On nonlinear Schrödinger equations,, Ann. Inst. Henri Poincaré Physique Théorique, 46 (1987), 113.   Google Scholar

[11]

T. Kato and G. Ponce, Commutator estimates for the Euler and Navier-Stokes equations,, Commun. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[12]

C. Laurey, The Cauchy problem for a generalized Zakharov system,, Diffe. Integral Equ., 8 (1995), 105.   Google Scholar

[13]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{\mathcalt\mathcalt}=-Au-F(u)$,, Transactions of the American Mathematical Society, 192 (1974), 1.  doi: 10.2307/1996814.  Google Scholar

[14]

C. T. Mckinstrie and D. A. Russell, Nonlinear focusing of coupled waves,, Phys. Rev. Lett., 61 (1988), 2929.  doi: 10.1103/PhysRevLett.61.2929.  Google Scholar

[15]

C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations,", Second edition, (2004).   Google Scholar

[16]

C. X. Miao, "The Modern Method of Nonlinear Wave Equations,", Lectures in Contemporary Mathematics, (2005).   Google Scholar

[17]

C. X. Miao and B. Zhang, "Harmonic Analysis Method of Partial Differential Equations,", Second edition, (2008).   Google Scholar

[18]

L. Nirenberg, On elliptic partial differential equations,, Ann. della Scuola Norm. Sup. Pisa, 13 (1959), 115.   Google Scholar

[19]

M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system,, Ann. Inst. Henri. Poincaré Phys. Théor., 62 (1995), 69.   Google Scholar

[20]

M. Ohta, Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in $\mathbbR^2$,, Ann. Inst. Henri. Poincaré Phys. Théor., 63 (1995), 111.   Google Scholar

[21]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^{1}$ solution for the nonlinear Schrödinger equation,, J. Diff. Eq., 92 (1991), 317.   Google Scholar

[22]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^{1}$ solutions for the one-dimension nonlinear Schrödinger equation with critical power nonlinearity,, Proc. Amer. Math. Soc., 111 (1991), 487.   Google Scholar

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel Journal of Mathematics, 22 (1975), 273.  doi: 10.1007/BF02761595.  Google Scholar

[24]

I. Segal, Nonlinear semi-groups,, Ann. Math., 78 (1963), 339.  doi: 10.2307/1970347.  Google Scholar

[25]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[26]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (): 567.   Google Scholar

[27]

V. E. Zakharov, The collapse of Langmuir waves,, Soviet Phys. JETP, 35 (1972), 908.   Google Scholar

[28]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations,, Nonlinear Analysis, 48 (2002), 191.  doi: 10.1016/S0362-546X(00)00180-2.  Google Scholar

[29]

J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential,, Commun. in PDE, 30 (2005), 1429.  doi: 10.1080/03605300500299539.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[18]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[19]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[20]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]