Citation: |
[1] |
L. Arnold, "Stochastic Differential Equations: Theory and Applications," Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. |
[2] |
A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences," Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. |
[3] |
L. S. Chen and J. Chen, "Nonlinear Biological Dynamical System," Science Press, Beijing, 1993. |
[4] |
M. Fan and K. Wang, Positive periodic solutions of a periodic integro-differential competition system with infinite delays, Z. Angew. Math. Mech., 81 (2001), 197-203. |
[5] |
M. Fan and K. Wang, Periodicity in a delayed ratio-dependent pedator-prey system, J. Math. Anal. Appl., 262 (2001), 179-190.doi: 10.1006/jmaa.2001.7555. |
[6] |
T. C. Gard, "Introduction to Stochastic Differential Equations," Monographs and Textbooks in Pure and Applied Mathematics, 114, Marcel Dekker, Inc., New York, 1988. |
[7] |
M. E. Gilpin, A Liapunov function for competition communities, J. Theor. Biol., 44 (1974), 35-48.doi: 10.1016/S0022-5193(74)80028-7. |
[8] |
B. S. Goh, Stability in models of mutualism, Amer. Natural, 113 (1979), 261-275.doi: 10.1086/283384. |
[9] |
H. B. Guo, M. Y. Li and Z. S. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canad. Appl. Math. Quart., 14 (2006), 259-284. |
[10] |
R. Z. Has'minskiǐ, "Stochastic Stability of Differential Equations," Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn-Germantown, Md., 1980. |
[11] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546. |
[12] |
J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection," London Mathematical Society Student Texts, 7, Cambridge University Press, Cambridge, 1988. |
[13] |
C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498.doi: 10.1016/j.jmaa.2009.05.039. |
[14] |
C. Y. Ji, D. Q. Jiang, L. Hong and Q. S. Yang, Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation, Math. Probl. Eng., 2010, Art. ID 684926, 18 pp. |
[15] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993. |
[16] |
M. Y. Li and Z. S. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248 (2010), 1-20. |
[17] |
X. R. Mao, "Stochastic Differential Equations and Applications," Horwood Publishing Series in Mathematics & Applications, Horwood Publishing Limited, Chichester, 1997. |
[18] |
X. R. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110.doi: 10.1016/S0304-4149(01)00126-0. |
[19] |
R. M. May, "Stability and Complexity in Model Ecosystems," Princeton University Press, Princeton, N.J., 1973. |
[20] |
L. R. Nie and D. C. Mei, Noise and time delay: Suppressed population explosion of the mutualism system, Europhys. Lett., 79 (2007), no. 20005, 6 pp. |
[21] |
G. Strang, "Linear Algebra and its Applications," Second edition, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. |
[22] |
M. Turelli, Random environments and stochastic calculus, Theor. Popul. Biol., 12 (1977), 140-178.doi: 10.1016/0040-5809(77)90040-5. |
[23] |
N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusion Processes," 2^{nd} edition, North-Holland Mathematical Library, 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. |
[24] |
D. B. West, "Introduction to Graph Theory," Prentice Hall, Inc., Upper Saddle River, NJ, 1996. |
[25] |
C. H. Zeng, G. Q. Zhang and X. F. Zhou, Dynamical properties of a mutualism system in the presence of noise and time delay, Braz. J. Phys., 39 (2009), 256-259.doi: 10.1590/S0103-97332009000300001. |
[26] |
C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 1155-1179.doi: 10.1137/060649343. |