March  2012, 32(3): 867-889. doi: 10.3934/dcds.2012.32.867

Persistence and non-persistence of a mutualism system with stochastic perturbation

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China, China

Received  October 2010 Revised  March 2011 Published  October 2011

In this paper, we consider a $n$-species Lotka-Volterra mutualism system with stochastic perturbation. Sufficient criteria for persistence in mean and stationary distribution of the system are established. Besides, we show the large white noise will make the system nonpersistent. Finally, we illustrate the dynamic behavior of the system with $n=3$ and their approximations via a range of numerical experiments.
Citation: Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867
References:
[1]

L. Arnold, "Stochastic Differential Equations: Theory and Applications," Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.

[2]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences," Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.

[3]

L. S. Chen and J. Chen, "Nonlinear Biological Dynamical System," Science Press, Beijing, 1993.

[4]

M. Fan and K. Wang, Positive periodic solutions of a periodic integro-differential competition system with infinite delays, Z. Angew. Math. Mech., 81 (2001), 197-203.

[5]

M. Fan and K. Wang, Periodicity in a delayed ratio-dependent pedator-prey system, J. Math. Anal. Appl., 262 (2001), 179-190. doi: 10.1006/jmaa.2001.7555.

[6]

T. C. Gard, "Introduction to Stochastic Differential Equations," Monographs and Textbooks in Pure and Applied Mathematics, 114, Marcel Dekker, Inc., New York, 1988.

[7]

M. E. Gilpin, A Liapunov function for competition communities, J. Theor. Biol., 44 (1974), 35-48. doi: 10.1016/S0022-5193(74)80028-7.

[8]

B. S. Goh, Stability in models of mutualism, Amer. Natural, 113 (1979), 261-275. doi: 10.1086/283384.

[9]

H. B. Guo, M. Y. Li and Z. S. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canad. Appl. Math. Quart., 14 (2006), 259-284.

[10]

R. Z. Has'minskiǐ, "Stochastic Stability of Differential Equations," Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn-Germantown, Md., 1980.

[11]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.

[12]

J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection," London Mathematical Society Student Texts, 7, Cambridge University Press, Cambridge, 1988.

[13]

C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498. doi: 10.1016/j.jmaa.2009.05.039.

[14]

C. Y. Ji, D. Q. Jiang, L. Hong and Q. S. Yang, Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation, Math. Probl. Eng., 2010, Art. ID 684926, 18 pp.

[15]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993.

[16]

M. Y. Li and Z. S. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248 (2010), 1-20.

[17]

X. R. Mao, "Stochastic Differential Equations and Applications," Horwood Publishing Series in Mathematics & Applications, Horwood Publishing Limited, Chichester, 1997.

[18]

X. R. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110. doi: 10.1016/S0304-4149(01)00126-0.

[19]

R. M. May, "Stability and Complexity in Model Ecosystems," Princeton University Press, Princeton, N.J., 1973.

[20]

L. R. Nie and D. C. Mei, Noise and time delay: Suppressed population explosion of the mutualism system, Europhys. Lett., 79 (2007), no. 20005, 6 pp.

[21]

G. Strang, "Linear Algebra and its Applications," Second edition, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.

[22]

M. Turelli, Random environments and stochastic calculus, Theor. Popul. Biol., 12 (1977), 140-178. doi: 10.1016/0040-5809(77)90040-5.

[23]

N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusion Processes," 2nd edition, North-Holland Mathematical Library, 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989.

[24]

D. B. West, "Introduction to Graph Theory," Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

[25]

C. H. Zeng, G. Q. Zhang and X. F. Zhou, Dynamical properties of a mutualism system in the presence of noise and time delay, Braz. J. Phys., 39 (2009), 256-259. doi: 10.1590/S0103-97332009000300001.

[26]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 1155-1179. doi: 10.1137/060649343.

show all references

References:
[1]

L. Arnold, "Stochastic Differential Equations: Theory and Applications," Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.

[2]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences," Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.

[3]

L. S. Chen and J. Chen, "Nonlinear Biological Dynamical System," Science Press, Beijing, 1993.

[4]

M. Fan and K. Wang, Positive periodic solutions of a periodic integro-differential competition system with infinite delays, Z. Angew. Math. Mech., 81 (2001), 197-203.

[5]

M. Fan and K. Wang, Periodicity in a delayed ratio-dependent pedator-prey system, J. Math. Anal. Appl., 262 (2001), 179-190. doi: 10.1006/jmaa.2001.7555.

[6]

T. C. Gard, "Introduction to Stochastic Differential Equations," Monographs and Textbooks in Pure and Applied Mathematics, 114, Marcel Dekker, Inc., New York, 1988.

[7]

M. E. Gilpin, A Liapunov function for competition communities, J. Theor. Biol., 44 (1974), 35-48. doi: 10.1016/S0022-5193(74)80028-7.

[8]

B. S. Goh, Stability in models of mutualism, Amer. Natural, 113 (1979), 261-275. doi: 10.1086/283384.

[9]

H. B. Guo, M. Y. Li and Z. S. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canad. Appl. Math. Quart., 14 (2006), 259-284.

[10]

R. Z. Has'minskiǐ, "Stochastic Stability of Differential Equations," Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, Sijthoff & Noordhoff, Alphen aan den Rijn-Germantown, Md., 1980.

[11]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.

[12]

J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection," London Mathematical Society Student Texts, 7, Cambridge University Press, Cambridge, 1988.

[13]

C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498. doi: 10.1016/j.jmaa.2009.05.039.

[14]

C. Y. Ji, D. Q. Jiang, L. Hong and Q. S. Yang, Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation, Math. Probl. Eng., 2010, Art. ID 684926, 18 pp.

[15]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993.

[16]

M. Y. Li and Z. S. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248 (2010), 1-20.

[17]

X. R. Mao, "Stochastic Differential Equations and Applications," Horwood Publishing Series in Mathematics & Applications, Horwood Publishing Limited, Chichester, 1997.

[18]

X. R. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97 (2002), 95-110. doi: 10.1016/S0304-4149(01)00126-0.

[19]

R. M. May, "Stability and Complexity in Model Ecosystems," Princeton University Press, Princeton, N.J., 1973.

[20]

L. R. Nie and D. C. Mei, Noise and time delay: Suppressed population explosion of the mutualism system, Europhys. Lett., 79 (2007), no. 20005, 6 pp.

[21]

G. Strang, "Linear Algebra and its Applications," Second edition, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.

[22]

M. Turelli, Random environments and stochastic calculus, Theor. Popul. Biol., 12 (1977), 140-178. doi: 10.1016/0040-5809(77)90040-5.

[23]

N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusion Processes," 2nd edition, North-Holland Mathematical Library, 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989.

[24]

D. B. West, "Introduction to Graph Theory," Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

[25]

C. H. Zeng, G. Q. Zhang and X. F. Zhou, Dynamical properties of a mutualism system in the presence of noise and time delay, Braz. J. Phys., 39 (2009), 256-259. doi: 10.1590/S0103-97332009000300001.

[26]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 1155-1179. doi: 10.1137/060649343.

[1]

Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Abraão D. C. Nascimento, Leandro C. Rêgo, Raphaela L. B. A. Nascimento. Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation. Inverse Problems and Imaging, 2019, 13 (4) : 787-803. doi: 10.3934/ipi.2019036

[4]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[5]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[6]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[7]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[8]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3065-3081. doi: 10.3934/jimo.2019094

[9]

Tao Wang. One dimensional $p$-th power Newtonian fluid with temperature-dependent thermal conductivity. Communications on Pure and Applied Analysis, 2016, 15 (2) : 477-494. doi: 10.3934/cpaa.2016.15.477

[10]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[11]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[12]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure and Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[13]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[14]

Baoquan Zhou, Yucong Dai. Stationary distribution, extinction, density function and periodicity of an n-species competition system with infinite distributed delays and nonlinear perturbations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022078

[15]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[16]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[17]

Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai. The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15 (4) : 681-710. doi: 10.3934/nhm.2020019

[18]

Parveen Bawa, Neha Bhardwaj, P. N. Agrawal. Quantitative Voronovskaya type theorems and GBS operators of Kantorovich variant of Lupaş-Stancu operators based on Pólya distribution. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022003

[19]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[20]

Xiaoqi Wei, Guo-Wei Wei. Homotopy continuation for the spectra of persistent Laplacians. Foundations of Data Science, 2021, 3 (4) : 677-700. doi: 10.3934/fods.2021017

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]