March  2012, 32(3): 867-889. doi: 10.3934/dcds.2012.32.867

Persistence and non-persistence of a mutualism system with stochastic perturbation

1. 

School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China, China

Received  October 2010 Revised  March 2011 Published  October 2011

In this paper, we consider a $n$-species Lotka-Volterra mutualism system with stochastic perturbation. Sufficient criteria for persistence in mean and stationary distribution of the system are established. Besides, we show the large white noise will make the system nonpersistent. Finally, we illustrate the dynamic behavior of the system with $n=3$ and their approximations via a range of numerical experiments.
Citation: Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867
References:
[1]

L. Arnold, "Stochastic Differential Equations: Theory and Applications,", Wiley-Interscience [John Wiley & Sons], (1974).   Google Scholar

[2]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,", Computer Science and Applied Mathematics, (1979).   Google Scholar

[3]

L. S. Chen and J. Chen, "Nonlinear Biological Dynamical System,", Science Press, (1993).   Google Scholar

[4]

M. Fan and K. Wang, Positive periodic solutions of a periodic integro-differential competition system with infinite delays,, Z. Angew. Math. Mech., 81 (2001), 197.   Google Scholar

[5]

M. Fan and K. Wang, Periodicity in a delayed ratio-dependent pedator-prey system,, J. Math. Anal. Appl., 262 (2001), 179.  doi: 10.1006/jmaa.2001.7555.  Google Scholar

[6]

T. C. Gard, "Introduction to Stochastic Differential Equations,", Monographs and Textbooks in Pure and Applied Mathematics, 114 (1988).   Google Scholar

[7]

M. E. Gilpin, A Liapunov function for competition communities,, J. Theor. Biol., 44 (1974), 35.  doi: 10.1016/S0022-5193(74)80028-7.  Google Scholar

[8]

B. S. Goh, Stability in models of mutualism,, Amer. Natural, 113 (1979), 261.  doi: 10.1086/283384.  Google Scholar

[9]

H. B. Guo, M. Y. Li and Z. S. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canad. Appl. Math. Quart., 14 (2006), 259.   Google Scholar

[10]

R. Z. Has'minskiǐ, "Stochastic Stability of Differential Equations,", Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7 (1980).   Google Scholar

[11]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations,, SIAM Rev., 43 (2001), 525.   Google Scholar

[12]

J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection," London Mathematical Society Student Texts, 7,, Cambridge University Press, (1988).   Google Scholar

[13]

C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation,, J. Math. Anal. Appl., 359 (2009), 482.  doi: 10.1016/j.jmaa.2009.05.039.  Google Scholar

[14]

C. Y. Ji, D. Q. Jiang, L. Hong and Q. S. Yang, Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation,, Math. Probl. Eng., 2010 (6849).   Google Scholar

[15]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[16]

M. Y. Li and Z. S. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Differential Equations, 248 (2010), 1.   Google Scholar

[17]

X. R. Mao, "Stochastic Differential Equations and Applications,", Horwood Publishing Series in Mathematics & Applications, (1997).   Google Scholar

[18]

X. R. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics,, Stochastic Process. Appl., 97 (2002), 95.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[19]

R. M. May, "Stability and Complexity in Model Ecosystems,", Princeton University Press, (1973).   Google Scholar

[20]

L. R. Nie and D. C. Mei, Noise and time delay: Suppressed population explosion of the mutualism system,, Europhys. Lett., 79 (2007).   Google Scholar

[21]

G. Strang, "Linear Algebra and its Applications," Second edition,, Academic Press [Harcourt Brace Jovanovich, (1980).   Google Scholar

[22]

M. Turelli, Random environments and stochastic calculus,, Theor. Popul. Biol., 12 (1977), 140.  doi: 10.1016/0040-5809(77)90040-5.  Google Scholar

[23]

N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusion Processes," 2nd edition,, North-Holland Mathematical Library, 24 (1989).   Google Scholar

[24]

D. B. West, "Introduction to Graph Theory,", Prentice Hall, (1996).   Google Scholar

[25]

C. H. Zeng, G. Q. Zhang and X. F. Zhou, Dynamical properties of a mutualism system in the presence of noise and time delay,, Braz. J. Phys., 39 (2009), 256.  doi: 10.1590/S0103-97332009000300001.  Google Scholar

[26]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems,, SIAM J. Control Optim., 46 (2007), 1155.  doi: 10.1137/060649343.  Google Scholar

show all references

References:
[1]

L. Arnold, "Stochastic Differential Equations: Theory and Applications,", Wiley-Interscience [John Wiley & Sons], (1974).   Google Scholar

[2]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,", Computer Science and Applied Mathematics, (1979).   Google Scholar

[3]

L. S. Chen and J. Chen, "Nonlinear Biological Dynamical System,", Science Press, (1993).   Google Scholar

[4]

M. Fan and K. Wang, Positive periodic solutions of a periodic integro-differential competition system with infinite delays,, Z. Angew. Math. Mech., 81 (2001), 197.   Google Scholar

[5]

M. Fan and K. Wang, Periodicity in a delayed ratio-dependent pedator-prey system,, J. Math. Anal. Appl., 262 (2001), 179.  doi: 10.1006/jmaa.2001.7555.  Google Scholar

[6]

T. C. Gard, "Introduction to Stochastic Differential Equations,", Monographs and Textbooks in Pure and Applied Mathematics, 114 (1988).   Google Scholar

[7]

M. E. Gilpin, A Liapunov function for competition communities,, J. Theor. Biol., 44 (1974), 35.  doi: 10.1016/S0022-5193(74)80028-7.  Google Scholar

[8]

B. S. Goh, Stability in models of mutualism,, Amer. Natural, 113 (1979), 261.  doi: 10.1086/283384.  Google Scholar

[9]

H. B. Guo, M. Y. Li and Z. S. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canad. Appl. Math. Quart., 14 (2006), 259.   Google Scholar

[10]

R. Z. Has'minskiǐ, "Stochastic Stability of Differential Equations,", Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7 (1980).   Google Scholar

[11]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations,, SIAM Rev., 43 (2001), 525.   Google Scholar

[12]

J. Hofbauer and K. Sigmund, "The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection," London Mathematical Society Student Texts, 7,, Cambridge University Press, (1988).   Google Scholar

[13]

C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation,, J. Math. Anal. Appl., 359 (2009), 482.  doi: 10.1016/j.jmaa.2009.05.039.  Google Scholar

[14]

C. Y. Ji, D. Q. Jiang, L. Hong and Q. S. Yang, Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation,, Math. Probl. Eng., 2010 (6849).   Google Scholar

[15]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[16]

M. Y. Li and Z. S. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Differential Equations, 248 (2010), 1.   Google Scholar

[17]

X. R. Mao, "Stochastic Differential Equations and Applications,", Horwood Publishing Series in Mathematics & Applications, (1997).   Google Scholar

[18]

X. R. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics,, Stochastic Process. Appl., 97 (2002), 95.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[19]

R. M. May, "Stability and Complexity in Model Ecosystems,", Princeton University Press, (1973).   Google Scholar

[20]

L. R. Nie and D. C. Mei, Noise and time delay: Suppressed population explosion of the mutualism system,, Europhys. Lett., 79 (2007).   Google Scholar

[21]

G. Strang, "Linear Algebra and its Applications," Second edition,, Academic Press [Harcourt Brace Jovanovich, (1980).   Google Scholar

[22]

M. Turelli, Random environments and stochastic calculus,, Theor. Popul. Biol., 12 (1977), 140.  doi: 10.1016/0040-5809(77)90040-5.  Google Scholar

[23]

N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusion Processes," 2nd edition,, North-Holland Mathematical Library, 24 (1989).   Google Scholar

[24]

D. B. West, "Introduction to Graph Theory,", Prentice Hall, (1996).   Google Scholar

[25]

C. H. Zeng, G. Q. Zhang and X. F. Zhou, Dynamical properties of a mutualism system in the presence of noise and time delay,, Braz. J. Phys., 39 (2009), 256.  doi: 10.1590/S0103-97332009000300001.  Google Scholar

[26]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems,, SIAM J. Control Optim., 46 (2007), 1155.  doi: 10.1137/060649343.  Google Scholar

[1]

Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019213

[3]

Abraão D. C. Nascimento, Leandro C. Rêgo, Raphaela L. B. A. Nascimento. Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation. Inverse Problems & Imaging, 2019, 13 (4) : 787-803. doi: 10.3934/ipi.2019036

[4]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[5]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[6]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[7]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[8]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019094

[9]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[10]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[11]

Tao Wang. One dimensional $p$-th power Newtonian fluid with temperature-dependent thermal conductivity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 477-494. doi: 10.3934/cpaa.2016.15.477

[12]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[13]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[14]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[15]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[16]

Levon Nurbekyan. One-dimensional, non-local, first-order stationary mean-field games with congestion: A Fourier approach. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 963-990. doi: 10.3934/dcdss.2018057

[17]

Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845

[18]

Daniel Maxin, Fabio Augusto Milner. The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences & Engineering, 2007, 4 (3) : 505-522. doi: 10.3934/mbe.2007.4.505

[19]

Francis Michael Russell, J. C. Eilbeck. Persistent mobile lattice excitations in a crystalline insulator. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1267-1285. doi: 10.3934/dcdss.2011.4.1267

[20]

Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]