\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Permutations and the Kolmogorov-Sinai entropy

Abstract Related Papers Cited by
  • This paper provides a way for determining the Kolmogorov-Sinai entropy of time-discrete dynamical systems on the base of quantifying ordinal patterns obtained from a finite set of observables. As a consequence, it is shown that the Kolmogorov-Sinai entropy is bounded from above by a quantity which generalizes the concept of permutation entropy. In this framework, the determination of the Kolmogorov-Sinai entropy of a multidimensional system by use of only a single one-dimensional observable and Takens' embedding theorem is discussed.
    Mathematics Subject Classification: Primary: 28D20; Secondary: 28D05, 37A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. M. Amigó, M. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D, 210 (2005), 77-95.doi: 10.1016/j.physd.2005.07.006.

    [2]

    C. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations, Nonlinearity, 15 (2002), 1595-1602.doi: 10.1088/0951-7715/15/5/312.

    [3]

    C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102.doi: 10.1103/PhysRevLett.88.174102.

    [4]

    M. Einsiedler and T. Ward, "Ergodic Theory With a View Towards Number Theory," Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011.

    [5]

    M. Einsiedler, E. Lindestrauss and T. Ward, "Entropy in Ergodic Theory and Homogeneous Dynamics.'' Available from: http://www.uea.ac.uk/menu/acad\_depts/mth/entropy.

    [6]

    K. Keller and M. Sinn, Kolmogorov-Sinai entropy from the ordinal viewpoint, Physica D, 239 (2010), 997-1000.doi: 10.1016/j.physd.2010.02.006.

    [7]

    K. Keller and M. Sinn, A standardized approach to the Kolmogorov-Sinai entropy, Nonlinearity, 22 (2009), 2417-2422.doi: 10.1088/0951-7715/22/10/006.

    [8]

    K. Keller, J. Emonds and M. Sinn, Time series from the ordinal viewpoint, Stochastics and Dynamics, 2 (2007), 247-272.doi: 10.1142/S0219493707002025.

    [9]

    M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Stud. Math., 67 (1980), 45-63.

    [10]

    T. Sauer, J. Yorke and M. Casdagli, Embeddology, J. Stat. Phys., 65 (1991), 579-616.doi: 10.1007/BF01053745.

    [11]

    F. Takens, Detecting strange attractors in turbulence, in "Dynamical Systems and Turbulence'' (eds. D. A. Rand and L. S. Young), Lecture Notes in Mathematics, 898, Springer, Berlin-New York, (1981), 366-381.

    [12]

    P. Walters, "An Introduction to Ergodic Theory,'' Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(191) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return