Citation: |
[1] |
J. Aczél, "Lectures on Functional Equations and Their Applications,'' Mathematics in Science and Engineering, Vol. 19, Academic Press, New York-London, 1966. |
[2] |
S. Akiyama and J.-Y. Lee, Algorithm for determining pure pointedness of self-affine tilings, Adv. Math., 226 (2011), 2855-2883.doi: 10.1016/j.aim.2010.07.019. |
[3] |
J. Andersen and I. Putnam, Topological invariants for substitution tilings and their associated $C^\mathbf{star}$-algebras, Ergodic Theory Dynam. Systems, 18 (1998), 509-537.doi: 10.1017/S0143385798100457. |
[4] |
M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems, 24 (2004), 1867-1893.doi: 10.1017/S0143385704000318. |
[5] |
M. Baake, D. Lenz and R. V. Moody, Characterization of model sets by dynamical systems, Ergodic Theory Dynam. Systems, 27 (2007), 341-382.doi: 10.1017/S0143385706000800. |
[6] |
R. Benedetti and J.-M. Gambaudo, On the dynamics of $\mathbb G$-solenoids. Applications to Delone sets, Ergodic Theory Dynam. Systems, 23 (2003), 673-691.doi: 10.1017/S0143385702001578. |
[7] |
A. Clark and L. Sadun, When shape matters: Deformations of tiling spaces, Ergodic Theory Dynam. Systems, 26 (2006), 69-86.doi: 10.1017/S0143385705000623. |
[8] |
L. Danzer, Inflation species of planar tilings which are not of locally finite complexity, Proc. Steklov Inst. Math., 239 (2002), 108-116. |
[9] |
S. Dworkin, Spectral theory and $x$-ray diffraction, J. Math. Phys., 34 (1993), 2965-2967.doi: 10.1063/1.530108. |
[10] |
N. P. Frank, A primer of substitution tilings of the Euclidean plane, Expo. Math., 26 (2008), 295-326.doi: 10.1016/j.exmath.2008.02.001. |
[11] |
N. P. Frank and E. A. Robinson, Jr., Generalized $\beta$-expansions, substitution tilings, and local finiteness, Trans. Amer. Math. Soc., 360 (2008), 1163-1177.doi: 10.1090/S0002-9947-07-04527-8. |
[12] |
J.-M. Gambaudo, A note on tilings and translation surfaces, Ergodic Theory Dynam. Systems, 26 (2006), 179-188.doi: 10.1017/S0143385705000404. |
[13] |
J.-B. Gouéré, Quasicrystals and almost periodicity, Comm. Math. Phys., 255 (2005), 655-681.doi: 10.1007/s00220-004-1271-8. |
[14] |
M. Hirsch and S. Smale, "Differential Equations, Dynamical Systems, and Linear Algebra,'' Pure and Applied Mathematics, Vol. 60, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. |
[15] |
C. Holton, C. Radin and L. Sadun, Conjugacies for tiling dynamical systems, Comm. Math. Phys., 254 (2005), 343-359.doi: 10.1007/s00220-004-1195-3. |
[16] |
J. Kellendonk, Pattern equivariant functions, deformations and equivalence of tiling spaces, Ergodic Theory Dynam. Systems, 28 (2008), 1153-1176.doi: 10.1017/S014338570700065X. |
[17] |
R. Kenyon, Self-replicating tilings, in "Symbolic Dynamics and its Application" (New Haven, CT, 1991), 239-263, |
[18] |
R. Kenyon, Inflationary tilings with a similarity structure, Comment. Math. Helv., 69 (1994), 169-198.doi: 10.1007/BF02564481. |
[19] |
R. Kenyon, The construction of self-similar tilings, Geom. Funct. Anal., 6 (1996), 471-488.doi: 10.1007/BF02249260. |
[20] |
R. Kenyon, "Self-Similar Tilings,'' Ph.D Thesis, Princeton University, NJ, 1990. |
[21] |
R. Kenyon and B. Solomyak, On the characterization of expansion maps for self-affine tilings, Discrete Comput. Geom., 43 (2010), 577-593. |
[22] |
J. C. Lagarias, Mathematical quasicrystals and the problem of diffraction, in "Directions in Mathematical Quasicrystals'' (ed. M. Baake and R. V. Moody), CRM Monograph Series, Vol. 13, AMS, Providence, RI, (2000), 61-93. |
[23] |
J. C. Lagarias and Y. Wang, Substitution Delone sets, Discrete Comput. Geom., 29 (2003), 175-209.doi: 10.1007/s00454-002-2820-6. |
[24] |
J.-Y. Lee, Substitution Delone sets with pure point spectrum are inter-model sets, J. Geom. Phys., 57 (2007), 2263-2285.doi: 10.1016/j.geomphys.2007.07.003. |
[25] |
J.-Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and diffraction spectra, Ann. Henri Poincaré, 3 (2002), 1003-1018.doi: 10.1007/s00023-002-8646-1. |
[26] |
J.-Y. Lee, R. V. Moody and B. Solomyak, Consequences of pure point diffraction spectra for multiset substitution systems, Discrete Comp. Geom., 29 (2003), 525-560.doi: 10.1007/s00454-003-0781-z. |
[27] |
J.-Y Lee and B. Solomyak, Pure point diffractive substitution Delone sets have the Meyer property, Discrete Comput. Geom., 39 (2008), 319-338.doi: 10.1007/s00454-008-9054-1. |
[28] |
D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems, 4 (1984), 283-300. |
[29] |
C. Mauduit, Caractérisation des ensembles normaux substitutifs, Invent. Math., 95 (1989), 133-147.doi: 10.1007/BF01394146. |
[30] |
R. V. Moody, Meyer sets and their duals, in "The Mathematics of Long-Range Aperiodic Order" (Waterloo, ON, 1995) (ed. R. V. Moody), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 489, Kluwer Acad. Publ., Dordrecht, (1997), 403-441. |
[31] |
S. Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Anal. Math., 53 (1989), 139-186.doi: 10.1007/BF02793412. |
[32] |
K. Petersen, Factor maps between tiling dynamical systems, Forum Math., 11 (1999), 503-512.doi: 10.1515/form.1999.011. |
[33] |
B. Praggastis, Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc., 351 (1999), 3315-3349.doi: 10.1090/S0002-9947-99-02360-0. |
[34] |
C. Radin, The pinwheel tilings of the plane, Annals of Math., 139 (1994), 661-702.doi: 10.2307/2118575. |
[35] |
E. A. Robinson, Symbolic dynamics and tilings of $\mathbbR^d$, in "Symbolic Dynamics and its Applications," 81-119, Proc. Sympos. Appl. Math., 60, Amer. Math. Soc., Providence, RI, 2004. |
[36] |
L. Sadun, Some generalizations of the Pinwheel tiling, Discrete Comput. Geom., 20 (1998), 79-110.doi: 10.1007/PL00009379. |
[37] |
L. Sadun, "Topology of Tiling Spaces,'' University Lecture Series, 46, Amer. Math. Soc., Providence, RI, 2008. |
[38] |
B. Solomyak, Corrections to: "Dynamics of self-similar tilings", [Ergodic Theory Dynam. Systems 17 (1997), 695-738], Ergodic Theory Dynam. Systems, 19 (1999), 1685.doi: 10.1017/S014338579917161X. |
[39] |
B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., 20 (1998), 265-279.doi: 10.1007/PL00009386. |
[40] |
B. Solomyak, Eigenfunctions for substitution tiling systems, in "Probability and Number Theory-Kanazawa 2005,'' 433-454, Adv. Stud. Pure Math., 49, Math. Soc., Japan, Tokyo, 2007. |
[41] |
B. Solomyak, Tilings and dynamics, Lecture Notes, EMS Summer School on Combinatorics, Automata and Number Theory, 8-19 May 2006, unpublished manuscript. Available from: http://www.math.washington.edu/ solomyak/PREPRINTS/notes6.pdf. |
[42] |
E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,'' With the assistance of Timothy S. Murphy, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993. |
[43] |
W. Thurston, "Groups, Tilings, and Finite State Automata,'' AMS lecture notes, 1989. |
[44] |
T. Vijayaraghavan, On the fractional parts of the powers of a number. II, Proc. Cambridge Philos. Soc., 37 (1941), 349-357.doi: 10.1017/S0305004100017989. |