• Previous Article
    Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets
  • DCDS Home
  • This Issue
  • Next Article
    Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain
March  2012, 32(3): 977-989. doi: 10.3934/dcds.2012.32.977

Non-algebraic attractors on $\mathbf{P}^k$

1. 

Department of Mathematics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China

Received  September 2010 Revised  May 2011 Published  October 2011

We show that special perturbations of a particular holomorphic map on $\mathbf{P}^k$ give us examples of maps that possess chaotic non-algebraic attractors. Furthermore, we study the dynamics of the maps on the attractors. In particular, we construct invariant hyperbolic measures supported on the attractors with nice dynamical properties.
Citation: Feng Rong. Non-algebraic attractors on $\mathbf{P}^k$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 977-989. doi: 10.3934/dcds.2012.32.977
References:
[1]

J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos,, Amer. Math. Monthly, 99 (1992), 332. doi: 10.2307/2324899. Google Scholar

[2]

J.-V. Briend and J. Duval, Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de $\mathbfP^k$,, (French) [Lyapunov exponents and distribution of periodic points of an endomorphism on $\mathbfP^k$], 182 (1999), 143. Google Scholar

[3]

J.-V. Briend and J. Duval, Deux caractérisations de la mesure d'équilibre d'un endomorphisme de $\mathbfP^k$,, (French) [Two characterizations of the equilibrium measure of an endomorphism on $\mathbfP^k$], 93 (2001), 145. Google Scholar

[4]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,", Reprint of the 2nd edition, (2003). Google Scholar

[5]

T.-C. Dinh, Attracting current and equilibrium measure for attractors on $\mathbfP^k$,, J. Geom. Anal., 17 (2007), 227. Google Scholar

[6]

J. E. Fornæss and N. Sibony, Critically finite rational maps on $\mathbfP^k$,, in, 137 (1992), 245. Google Scholar

[7]

J. E. Fornæss and N. Sibony, Complex dynamics in higher dimensions,, Notes partially written by Estela A. Gavosto, 439 (1994), 131. Google Scholar

[8]

J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems,, Astérisque, 222 (1994), 201. Google Scholar

[9]

J. E. Fornæss and N. Sibony, Dynamics of $\mathbfP^2$ (Examples),, in, 269 (2001), 47. Google Scholar

[10]

J. E. Fornæss and B. Weickert, Attractors in $\mathbfP^2$,, in, 37 (1999), 1995. Google Scholar

[11]

P. Griffiths and J. Harris, "Principles of Algebraic Geometry,", Wiley Classics Library, (1994). Google Scholar

[12]

M. Jonsson, Some properties of 2-critically finite holomorphic maps of $\mathbfP^2$,, Ergodic Theory Dynam. Systems, 18 (1998), 171. doi: 10.1017/S0143385798097521. Google Scholar

[13]

M. Jonsson and B. Weickert, A nonalgebraic attractor in $\mathbfP^2$,, Proc. Amer. Math. Soc., 128 (2000), 2999. doi: 10.1090/S0002-9939-00-05529-5. Google Scholar

[14]

A. Katok and B. Hasselblatt, "Introduction to The Modern Theory of Dynamical Systems,", Encycl. of Math. and its Appl., 54 (1995). Google Scholar

[15]

J. Milnor, On the concept of attractor,, Commun. Math. Phys., 99 (1985), 177. doi: 10.1007/BF01212280. Google Scholar

[16]

F. Rong, "Critically Finite Maps, Attractors and Local Dynamics,", Ph.D. Thesis, (2007). Google Scholar

[17]

F. Rong, The Fatou set for critically finite maps,, Proc. Amer. Math. Soc., 136 (2008), 3621. doi: 10.1090/S0002-9939-08-09358-1. Google Scholar

[18]

D. Ruelle, "Elements of Differentiable Dynamics and Bifurcation Theory,", Academic Press, (1989). Google Scholar

[19]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982). Google Scholar

show all references

References:
[1]

J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos,, Amer. Math. Monthly, 99 (1992), 332. doi: 10.2307/2324899. Google Scholar

[2]

J.-V. Briend and J. Duval, Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de $\mathbfP^k$,, (French) [Lyapunov exponents and distribution of periodic points of an endomorphism on $\mathbfP^k$], 182 (1999), 143. Google Scholar

[3]

J.-V. Briend and J. Duval, Deux caractérisations de la mesure d'équilibre d'un endomorphisme de $\mathbfP^k$,, (French) [Two characterizations of the equilibrium measure of an endomorphism on $\mathbfP^k$], 93 (2001), 145. Google Scholar

[4]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,", Reprint of the 2nd edition, (2003). Google Scholar

[5]

T.-C. Dinh, Attracting current and equilibrium measure for attractors on $\mathbfP^k$,, J. Geom. Anal., 17 (2007), 227. Google Scholar

[6]

J. E. Fornæss and N. Sibony, Critically finite rational maps on $\mathbfP^k$,, in, 137 (1992), 245. Google Scholar

[7]

J. E. Fornæss and N. Sibony, Complex dynamics in higher dimensions,, Notes partially written by Estela A. Gavosto, 439 (1994), 131. Google Scholar

[8]

J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems,, Astérisque, 222 (1994), 201. Google Scholar

[9]

J. E. Fornæss and N. Sibony, Dynamics of $\mathbfP^2$ (Examples),, in, 269 (2001), 47. Google Scholar

[10]

J. E. Fornæss and B. Weickert, Attractors in $\mathbfP^2$,, in, 37 (1999), 1995. Google Scholar

[11]

P. Griffiths and J. Harris, "Principles of Algebraic Geometry,", Wiley Classics Library, (1994). Google Scholar

[12]

M. Jonsson, Some properties of 2-critically finite holomorphic maps of $\mathbfP^2$,, Ergodic Theory Dynam. Systems, 18 (1998), 171. doi: 10.1017/S0143385798097521. Google Scholar

[13]

M. Jonsson and B. Weickert, A nonalgebraic attractor in $\mathbfP^2$,, Proc. Amer. Math. Soc., 128 (2000), 2999. doi: 10.1090/S0002-9939-00-05529-5. Google Scholar

[14]

A. Katok and B. Hasselblatt, "Introduction to The Modern Theory of Dynamical Systems,", Encycl. of Math. and its Appl., 54 (1995). Google Scholar

[15]

J. Milnor, On the concept of attractor,, Commun. Math. Phys., 99 (1985), 177. doi: 10.1007/BF01212280. Google Scholar

[16]

F. Rong, "Critically Finite Maps, Attractors and Local Dynamics,", Ph.D. Thesis, (2007). Google Scholar

[17]

F. Rong, The Fatou set for critically finite maps,, Proc. Amer. Math. Soc., 136 (2008), 3621. doi: 10.1090/S0002-9939-08-09358-1. Google Scholar

[18]

D. Ruelle, "Elements of Differentiable Dynamics and Bifurcation Theory,", Academic Press, (1989). Google Scholar

[19]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982). Google Scholar

[1]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[2]

Zeng Lian, Peidong Liu, Kening Lu. Existence of SRB measures for a class of partially hyperbolic attractors in banach spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3905-3920. doi: 10.3934/dcds.2017164

[3]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[4]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[5]

Vítor Araújo, Ali Tahzibi. Physical measures at the boundary of hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 849-876. doi: 10.3934/dcds.2008.20.849

[6]

B. San Martín, Kendry J. Vivas. Asymptotically sectional-hyperbolic attractors. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4057-4071. doi: 10.3934/dcds.2019163

[7]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[8]

Anatole Katok. Hyperbolic measures and commuting maps in low dimension. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 397-411. doi: 10.3934/dcds.1996.2.397

[9]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[10]

Eleonora Catsigeras, Heber Enrich. SRB measures of certain almost hyperbolic diffeomorphisms with a tangency. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 177-202. doi: 10.3934/dcds.2001.7.177

[11]

A. M. López. Finiteness and existence of attractors and repellers on sectional hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 337-354. doi: 10.3934/dcds.2017014

[12]

Aubin Arroyo, Enrique R. Pujals. Dynamical properties of singular-hyperbolic attractors. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 67-87. doi: 10.3934/dcds.2007.19.67

[13]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[14]

Luis Barreira, Yakov Pesin and Jorg Schmeling. On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture. Electronic Research Announcements, 1996, 2: 69-72.

[15]

Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133

[16]

Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313

[17]

Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63

[18]

Zhicong Liu. SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1545-1562. doi: 10.3934/dcds.2013.33.1545

[19]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215

[20]

Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]