Citation: |
[1] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.doi: 10.2307/2324899. |
[2] |
J.-V. Briend and J. Duval, Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de $\mathbfP^k$, (French) [Lyapunov exponents and distribution of periodic points of an endomorphism on $\mathbfP^k$], Acta Math., 182 (1999), 143-157. |
[3] |
J.-V. Briend and J. Duval, Deux caractérisations de la mesure d'équilibre d'un endomorphisme de $\mathbfP^k$, (French) [Two characterizations of the equilibrium measure of an endomorphism on $\mathbfP^k$], Publ. Math. Inst. Hautes Études Sci., 93 (2001), 145-159. |
[4] |
R. Devaney, "An Introduction to Chaotic Dynamical Systems," Reprint of the 2nd edition, Studies in Nonlinearity, Westview Press, Boulder, CO, 2003. |
[5] |
T.-C. Dinh, Attracting current and equilibrium measure for attractors on $\mathbfP^k$, J. Geom. Anal., 17 (2007), 227-244. |
[6] |
J. E. Fornæss and N. Sibony, Critically finite rational maps on $\mathbfP^k$, in "The Madison Symposium on Complex Analysis" (Madison, WI, 1991), Contemp. Math., 137, Amer. Math. Soc., Providence, RI, (1992), 245-260. |
[7] |
J. E. Fornæss and N. Sibony, Complex dynamics in higher dimensions, Notes partially written by Estela A. Gavosto, in "Complex Potential Theory" (eds. P. M. Gauthier and G. Sabidussi) (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, Kluwer Academic Publishers, Dordrecht, (1994), 131-186. |
[8] |
J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems, Astérisque, 222 (1994), 201-231. |
[9] |
J. E. Fornæss and N. Sibony, Dynamics of $\mathbfP^2$ (Examples), in "Laminations and Foliations in Dynamics, Geometry and Topology" (Stony Brook, NY, 1998), Contemp. Math., 269, Amer. Math. Soc., Providence, RI, (2001), 47-85. |
[10] |
J. E. Fornæss and B. Weickert, Attractors in $\mathbfP^2$, in "Several Complex Variables" (Berkeley, CA, 1995-1996), Math. Sci. Res. Inst. Publ., 37, Cambridge Univ. Press, Cambridge, (1999), 297-307. |
[11] |
P. Griffiths and J. Harris, "Principles of Algebraic Geometry," Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. |
[12] |
M. Jonsson, Some properties of 2-critically finite holomorphic maps of $\mathbfP^2$, Ergodic Theory Dynam. Systems, 18 (1998), 171-187.doi: 10.1017/S0143385798097521. |
[13] |
M. Jonsson and B. Weickert, A nonalgebraic attractor in $\mathbfP^2$, Proc. Amer. Math. Soc., 128 (2000), 2999-3002.doi: 10.1090/S0002-9939-00-05529-5. |
[14] |
A. Katok and B. Hasselblatt, "Introduction to The Modern Theory of Dynamical Systems," Encycl. of Math. and its Appl., 54, Cambridge Univ. Press, Cambridge, 1995. |
[15] |
J. Milnor, On the concept of attractor, Commun. Math. Phys., 99 (1985), 177-195.doi: 10.1007/BF01212280. |
[16] |
F. Rong, "Critically Finite Maps, Attractors and Local Dynamics," Ph.D. Thesis, University of Michigan, 2007. |
[17] |
F. Rong, The Fatou set for critically finite maps, Proc. Amer. Math. Soc., 136 (2008), 3621-3625.doi: 10.1090/S0002-9939-08-09358-1. |
[18] |
D. Ruelle, "Elements of Differentiable Dynamics and Bifurcation Theory," Academic Press, Inc., Boston, 1989. |
[19] |
P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |