March  2012, 32(3): 991-1009. doi: 10.3934/dcds.2012.32.991

Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain

1. 

College of science, Xi’an Jiaotong University, Xi’an, 710049, China

Received  September 2010 Revised  May 2011 Published  October 2011

We investigate the asymptotic behavior of solutions of a class of non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. The existence of pullback global attractors is proved in $L^2(\Omega)\times L^2(\Omega)$ and $H^1(\Omega)\times H^1(\Omega)$, respectively.
Citation: Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991
References:
[1]

B. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations,, Acta. Math. Appl. Sinica (English Ser.), 5 (1989), 208.   Google Scholar

[2]

B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations,, Chinese Ann. Math. Ser. B, 16 (1995), 379.   Google Scholar

[3]

B. Guo and B. Wang, Gevrey class regularity and approximate inertial manifolds for the Newton-Boussinesq equations,, Chinese Ann. Math. Ser. B, 19 (1998), 179.   Google Scholar

[4]

B. Guo and B. Wang, Approximate inertial manifolds to the Newton-Boussinesq equations,, J. Partial Differential Equations, 9 (1996), 237.   Google Scholar

[5]

G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel,, Nonlinear Anal., 70 (2009), 2000.  doi: 10.1016/j.na.2008.02.098.  Google Scholar

[6]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[7]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, C. R. Acad. Sci. Paris, 342 (2006), 263.   Google Scholar

[8]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains,, Nonlinear Anal., 70 (2009), 3799.  doi: 10.1016/j.na.2008.07.011.  Google Scholar

[9]

B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations,, Nonlinear Anal., 72 (2010), 3887.  doi: 10.1016/j.na.2010.01.026.  Google Scholar

show all references

References:
[1]

B. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations,, Acta. Math. Appl. Sinica (English Ser.), 5 (1989), 208.   Google Scholar

[2]

B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations,, Chinese Ann. Math. Ser. B, 16 (1995), 379.   Google Scholar

[3]

B. Guo and B. Wang, Gevrey class regularity and approximate inertial manifolds for the Newton-Boussinesq equations,, Chinese Ann. Math. Ser. B, 19 (1998), 179.   Google Scholar

[4]

B. Guo and B. Wang, Approximate inertial manifolds to the Newton-Boussinesq equations,, J. Partial Differential Equations, 9 (1996), 237.   Google Scholar

[5]

G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel,, Nonlinear Anal., 70 (2009), 2000.  doi: 10.1016/j.na.2008.02.098.  Google Scholar

[6]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[7]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, C. R. Acad. Sci. Paris, 342 (2006), 263.   Google Scholar

[8]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains,, Nonlinear Anal., 70 (2009), 3799.  doi: 10.1016/j.na.2008.07.011.  Google Scholar

[9]

B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations,, Nonlinear Anal., 72 (2010), 3887.  doi: 10.1016/j.na.2010.01.026.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]