January  2013, 33(1): 1-6. doi: 10.3934/dcds.2013.33.1

On a property of a generalized Kolmogorov population model

1. 

Department of Mathematics, University of Texas at San Antonio, San Antonio, Texas 78249, United States

2. 

Department of Mathematics, University of Miami, Coral Gables, Miami, Florida 33124, United States

Received  August 2011 Revised  January 2012 Published  September 2012

We consider Kolmogorov-type systems which are not necessarily competitive or cooperative. Our main result shows that such systems cannot have nontrivial periodic solutions whose orbits are orbitally stable. We obtain our results under two assumptions that we consider to be natural assumptions.
Citation: Shair Ahmad, Alan C. Lazer. On a property of a generalized Kolmogorov population model. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 1-6. doi: 10.3934/dcds.2013.33.1
References:
[1]

S. Ahmad and A. C. Lazer, Average growth and total permanence in a competitive Lotka-Volterra system, Ann. Mat. Pura Appl., 185 (2006), S47-S67. doi: 10.1007/s10231-004-0136-2.

[2]

C. Cosner and R. S. Cantrell, "Spatial Ecology via Reaction-Diffusion Equations," John Wiley, 2003.

[3]

K. P. Hadeler and D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model, J. Math. Anal. Appl., 95 (1983), 297-303. doi: 10.1016/0022-247X(83)90108-7.

[4]

M. W. Hirsch, The dynamical systems approach to differential equations, Bull. Amer. Math. Soc., 11 (1984), 1-64. doi: 10.1090/S0273-0979-1984-15236-4.

[5]

J. Jiang, Attractors for strictly monotone flows, J. Math. Anal. Appl., 162 (1991), 210-223. doi: 10.1016/0022-247X(91)90188-6.

[6]

A. N. Kolmogorov, "Sulla Teoria Di Volterra Della Lotta Per L'esistenza," Giorn. Instituto Ital. Attuari, 1936.

[7]

H. L. Smith, "Monotone Dynamical Systems: An introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, 1995.

[8]

F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems, Results Math., 21 (1992), 224-250.

[9]

M. L. Zeeman, Hopf bifurcation in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Syst., 8 (1993), 189-216. doi: 10.1080/02681119308806158.

show all references

References:
[1]

S. Ahmad and A. C. Lazer, Average growth and total permanence in a competitive Lotka-Volterra system, Ann. Mat. Pura Appl., 185 (2006), S47-S67. doi: 10.1007/s10231-004-0136-2.

[2]

C. Cosner and R. S. Cantrell, "Spatial Ecology via Reaction-Diffusion Equations," John Wiley, 2003.

[3]

K. P. Hadeler and D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model, J. Math. Anal. Appl., 95 (1983), 297-303. doi: 10.1016/0022-247X(83)90108-7.

[4]

M. W. Hirsch, The dynamical systems approach to differential equations, Bull. Amer. Math. Soc., 11 (1984), 1-64. doi: 10.1090/S0273-0979-1984-15236-4.

[5]

J. Jiang, Attractors for strictly monotone flows, J. Math. Anal. Appl., 162 (1991), 210-223. doi: 10.1016/0022-247X(91)90188-6.

[6]

A. N. Kolmogorov, "Sulla Teoria Di Volterra Della Lotta Per L'esistenza," Giorn. Instituto Ital. Attuari, 1936.

[7]

H. L. Smith, "Monotone Dynamical Systems: An introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, 1995.

[8]

F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems, Results Math., 21 (1992), 224-250.

[9]

M. L. Zeeman, Hopf bifurcation in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Syst., 8 (1993), 189-216. doi: 10.1080/02681119308806158.

[1]

Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505

[2]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[3]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[4]

Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1

[5]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

[6]

Zengji Du, Shuling Yan, Kaige Zhuang. Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3097-3111. doi: 10.3934/dcdss.2021010

[7]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[8]

Hélène Leman, Sylvie Méléard, Sepideh Mirrahimi. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 469-493. doi: 10.3934/dcdsb.2015.20.469

[9]

Xiaoling Zou, Ke Wang. Optimal harvesting for a stochastic N-dimensional competitive Lotka-Volterra model with jumps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 683-701. doi: 10.3934/dcdsb.2015.20.683

[10]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[11]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[12]

Francisco Montes de Oca, Liliana Pérez. Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2663-2690. doi: 10.3934/dcdsb.2015.20.2663

[13]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[14]

Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071

[15]

Isabel Coelho, Carlota Rebelo, Elisa Sovrano. Extinction or coexistence in periodic Kolmogorov systems of competitive type. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5743-5764. doi: 10.3934/dcds.2021094

[16]

Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75

[17]

G. Donald Allen. A dynamic model for competitive-cooperative species. Conference Publications, 1998, 1998 (Special) : 29-50. doi: 10.3934/proc.1998.1998.29

[18]

Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651

[19]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[20]

Helen Christodoulidi, Andrew N. W. Hone, Theodoros E. Kouloukas. A new class of integrable Lotka–Volterra systems. Journal of Computational Dynamics, 2019, 6 (2) : 223-237. doi: 10.3934/jcd.2019011

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (127)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]