March  2013, 33(3): 1061-1076. doi: 10.3934/dcds.2013.33.1061

Boundary values of the resolvent of Schrödinger hamiltonians with potentials of order zero

1. 

Departamento de Ciencias Básicas, UAM-A, Av. San Pablo 180, Col. Reynosa, México D.F. 02200, Mexico

Received  April 2011 Revised  October 2011 Published  October 2012

Let $H=-\Delta +V$ be a Schrödinger hamiltonian acting on $L^2(\mathbb{R}^n)$, $n\geq 2$, where $V$ a potential of order zero plus a short-range perturbation. In this work we investigate the behavior of the resolvent $R(z)=(H-z)^{-1}$ of $H$ as Im$\,z \downarrow 0$, at high energies and in the framework of Besov spaces $B(\mathbb{R}^n)$. For $\lambda_0>0$ sufficiently large and $\lambda\geq\lambda_0$, we show that there exists a linear operator $R(\lambda+i0)$ such that $R(\lambda+i\epsilon)$ converges to $R(\lambda+i0)$ as $\epsilon\downarrow 0$, strongly in $\mathcal{L}(L^{2, s}(\mathbb{R}^n),L^{2,-s}(\mathbb{R}^n))$, $s>1/2$, and weakly in $\mathcal{L}(B(\mathbb{R}^n),B^*(\mathbb{R}^n))$. We achieve this through a Mourre-estimate strategy.
Citation: J. Cruz-Sampedro. Boundary values of the resolvent of Schrödinger hamiltonians with potentials of order zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1061-1076. doi: 10.3934/dcds.2013.33.1061
References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151.   Google Scholar

[2]

S. Agmon, J. Cruz and I. Herbst, Generalized Fourier transform for Schrödinger operators with potentials of order zero,, Journal of Functional Analysis, 167 (1999), 345.  doi: 10.1006/jfan.1999.3432.  Google Scholar

[3]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics,, Journal D'Analyse Mathématique, 30 (1976).   Google Scholar

[4]

G. Barles, On eikonal equations associated with Schrödinger operators with nonspherical radiation conditions,, Commun. in Partial Differential Equations, 12 (1987), 263.   Google Scholar

[5]

J. Cruz-Sampedro, The eikonal equation and a class of Schrödinger-like operators,, Submitted 2011., (2011).   Google Scholar

[6]

J. Dereziński and C. Gérard, "Scattering Theory of Classical and Quantum $N$-Particle Systems,", Springer, (1997).   Google Scholar

[7]

W. Jäger, Über das Dirichletsche Auβenraumproblem fü die Schwingungsgleichung,, Math. Zeitschr, 95 (1967), 299.  doi: 10.1007/BF01111082.  Google Scholar

[8]

A. Jensen and P. Perry, Commutator methods and Besov space estimates for Schrödinger operators,, J. Operator Theory, 14 (1985), 181.   Google Scholar

[9]

D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators,, Ann. Math., 121 (1985), 463.  doi: 10.2307/1971205.  Google Scholar

[10]

E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators,, Commun. Math. Phys., 78 (): 391.  doi: 10.1007/BF01942331.  Google Scholar

[11]

P. Perry, I. Sigal and B. Simon, Spectral analysis of $N$-body Schrödinger operators,, Ann. Math., 114 (1981), 519.  doi: 10.2307/1971301.  Google Scholar

[12]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, III Sacattering Theory,", New York, (1979).   Google Scholar

[13]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators,", Academic Press, (1978).   Google Scholar

[14]

Y. Saitō, Schrödinger operators with a nonspherical radiation condition,, Pacific Journal of Mathematics, 126 (1987), 331.   Google Scholar

[15]

I. Sigal, "Scattering Theory for Many-Body Quantum Mechanical Systems,", Lecture Notes in Mathematics 1011, (1011).   Google Scholar

[16]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, (French) Ann. Inst. Fourier (Grenoble), 15 (1965), 189.   Google Scholar

show all references

References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151.   Google Scholar

[2]

S. Agmon, J. Cruz and I. Herbst, Generalized Fourier transform for Schrödinger operators with potentials of order zero,, Journal of Functional Analysis, 167 (1999), 345.  doi: 10.1006/jfan.1999.3432.  Google Scholar

[3]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics,, Journal D'Analyse Mathématique, 30 (1976).   Google Scholar

[4]

G. Barles, On eikonal equations associated with Schrödinger operators with nonspherical radiation conditions,, Commun. in Partial Differential Equations, 12 (1987), 263.   Google Scholar

[5]

J. Cruz-Sampedro, The eikonal equation and a class of Schrödinger-like operators,, Submitted 2011., (2011).   Google Scholar

[6]

J. Dereziński and C. Gérard, "Scattering Theory of Classical and Quantum $N$-Particle Systems,", Springer, (1997).   Google Scholar

[7]

W. Jäger, Über das Dirichletsche Auβenraumproblem fü die Schwingungsgleichung,, Math. Zeitschr, 95 (1967), 299.  doi: 10.1007/BF01111082.  Google Scholar

[8]

A. Jensen and P. Perry, Commutator methods and Besov space estimates for Schrödinger operators,, J. Operator Theory, 14 (1985), 181.   Google Scholar

[9]

D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators,, Ann. Math., 121 (1985), 463.  doi: 10.2307/1971205.  Google Scholar

[10]

E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators,, Commun. Math. Phys., 78 (): 391.  doi: 10.1007/BF01942331.  Google Scholar

[11]

P. Perry, I. Sigal and B. Simon, Spectral analysis of $N$-body Schrödinger operators,, Ann. Math., 114 (1981), 519.  doi: 10.2307/1971301.  Google Scholar

[12]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, III Sacattering Theory,", New York, (1979).   Google Scholar

[13]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators,", Academic Press, (1978).   Google Scholar

[14]

Y. Saitō, Schrödinger operators with a nonspherical radiation condition,, Pacific Journal of Mathematics, 126 (1987), 331.   Google Scholar

[15]

I. Sigal, "Scattering Theory for Many-Body Quantum Mechanical Systems,", Lecture Notes in Mathematics 1011, (1011).   Google Scholar

[16]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, (French) Ann. Inst. Fourier (Grenoble), 15 (1965), 189.   Google Scholar

[1]

Vagif S. Guliyev, Ramin V. Guliyev, Mehriban N. Omarova, Maria Alessandra Ragusa. Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 671-690. doi: 10.3934/dcdsb.2019260

[2]

Russell Johnson, Luca Zampogni. Some examples of generalized reflectionless Schrödinger potentials. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1149-1170. doi: 10.3934/dcdss.2016046

[3]

Jun Cao, Der-Chen Chang, Dachun Yang, Sibei Yang. Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1435-1463. doi: 10.3934/cpaa.2014.13.1435

[4]

Sandra Lucente, Eugenio Montefusco. Non-hamiltonian Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 761-770. doi: 10.3934/dcdss.2013.6.761

[5]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[6]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[7]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[8]

Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91

[9]

Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095

[10]

Haidong Liu, Zhaoli Liu. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1431-1464. doi: 10.3934/dcds.2016.36.1431

[11]

Rémi Carles, Christof Sparber. Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 759-774. doi: 10.3934/dcdsb.2012.17.759

[12]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. A discrete Liouville identity for numerical reconstruction of Schrödinger potentials. Inverse Problems & Imaging, 2017, 11 (4) : 623-641. doi: 10.3934/ipi.2017029

[13]

Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129

[14]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[15]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[16]

Russell Johnson, Luca Zampogni. Remarks on a paper of Kotani concerning generalized reflectionless Schrödinger potentials. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 559-586. doi: 10.3934/dcdsb.2010.14.559

[17]

Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087

[18]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[19]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[20]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]