Citation: |
[1] |
R. Abraham and J. E. Marsden, "Foundation of Mechanics,'' Second Edition , Addison Wesley, 1978. |
[2] |
V. I. Arnold, "Mathematical Methods of Classical Mechanics,'' Second Edition, Springer-Verlag, 1989. |
[3] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Mathematical Aspects of Classical and Celestial Mechanics,'' Encyclopedia of Math. Sci., Vol. 3 (Dynamical Systems III), Springer-Verlag, Berlin-New York, 1988. |
[4] |
O. I. Bogoyavlenskij, Theory of tensor invariants of integrable Hamiltonian systems I. Incompatible poisson structures, Comm. Math. Phys., 180 (1996), 529-586.doi: 10.1007/BF02099623. |
[5] |
A. D. Bryuno, Normalization of a Hamiltonian system near an invariant cycle or torus, Russian Math. Surveys, 44 (1989), 53-89.doi: 10.1070/RM1989v044n02ABEH002041. |
[6] |
G. Dávila-Rascón, Hamiltonian structures for two frequency systems and the KAM-setting, Aportaciones Matemáticas, Memorias Sociedad Matemática Mexicana, 38 (2008), 11-21. |
[7] |
G. Dávila-Rascón, R. Flores-Espinoza and Y. Vorobiev, Euler equations on $\mathfrak so (4)$ as a nearly integrable Hamiltonian system, Qualitative Theory of Dynamical Systems, 7 (2008), 129-146.doi: 10.1007/s12346-008-0007-0. |
[8] |
G. Dávila-Rascón and Y. Vorobiev, A Hamiltonian approach for skew-product dynamical systems, Russian J. of Math. Phys., 15 (2008), 35-44. |
[9] |
G. Dávila-Rascón and Y. Vorobiev, The first step normalization for Hamiltonian systems with two degrees of freedom over orbit cylinders, Electronic J. of Diff. Equations, 2009 (2009), 1-17. |
[10] |
F. Espinoza and Y. Vorobiev, Hamiltonian formalism for fiberwise linear Hamiltonian dynamical systems, Bol. Soc. Mat. Mexicana, 6 (2000), 213-234. |
[11] |
M. Gotay, R. Lashof, J. Sniatycki and A. Weinstein, Closed forms on symplectic fiber bundles, Comment. Math. Helv., 58 (1983), 617-621.doi: 10.1007/BF02564656. |
[12] |
S. Golin, A. Knauf and S. Marmi, The Hannay angles: Geometry, adiabaticity and an example, Commun. Math. Phys., 123 (1989), 95-122.doi: 10.1007/BF01244019. |
[13] |
W. Greub, S. Halperin and R. Vanstone., "Connections, Curvature and Cohomology,'' Vol. II, Academic Press, New York-London, 1973. |
[14] |
V. Guillemin and S. Sternberg, "Symplectic Techniques in Physics,'' Cambridge, Univ. Press, 1984. |
[15] |
V. Guillemin, E. Lerman and S. Sternberg, "Symplectic Fibrations and Multiplicity Diagrams,'' Cambridge Univ. Press., Cambridge, 1996.doi: 10.1017/CBO9780511574788. |
[16] |
M. V. Karasev and Yu. M. Vorobjev, Adapted connections, Hamilton dynamics, geometric phases and quantization over isotropic submanifolds, Amer. Math. Soc. Transl. (2), 187 (1998), 203-326. |
[17] |
V. V. Kozlov, "Symmetries, Topology, and Resonances in Hamiltonian Mechanics,'' Springer-Verlag, 1996.doi: 10.1007/978-3-642-78393-7. |
[18] |
J. E. Marsden, R. Montgomery and T. Ratiu, Reduction, symmetry and phases in mechanics, Memoirs of the AMS, Providence, R. I., 88 (1990), 1-110. |
[19] |
J. R. Marsden, T. S. Ratiu and G. Raugel, Symplectic connections and the linearization of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, Sect. A, 117 (1991), 329-380. |
[20] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'' Spinger-Verlag, N. Y., 1994. |
[21] |
D. McDuff and D. Salamon, "Introduction to Symplectic Topology,'' Oxford Mathematical Monographs, Clarendon Press, Oxford, Second Edition, 1998. |
[22] |
P. Michor, "Topics in Differential Geometry,'' Graduate Studies in Mathematics, Vol. 93, American Mathematical Society, Providence, R. I., 2008. |
[23] |
R. Montgomery, J. E. Marsden and T. Ratiu, Gauged Lie-Poisson structures, Cont. Math. AMS, (Boulder Proceedings on Fluids and Plasmas), 28 (1984), 101-114. |
[24] |
R. Montgomery, The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case, Commun. Math. Phys., 120 (1988), 269-294.doi: 10.1007/BF01217966. |
[25] |
A. Neishtadt, Averaging method and adiabatic invariants, in "Hamiltonian Dynamical Systems and Applications'' (ed. W. Craig), Springer Science + Business Media B. V., 2008, 53-66. |
[26] |
S. Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci., U.S.A., 74 (1977), 5253-5254.doi: 10.1073/pnas.74.12.5253. |
[27] |
Y. M. Vorobiev, Hamiltonian structures of the first variation equations, Sbornik: Mathematics, 191 (2000), 447-502. |
[28] |
Y. M. Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, Lie Algebroids, Banach Center Publ., Warzawa, 54 (2001) 249-274. |
[29] |
Y. M. Vorobjev, Poisson structures and linear Euler systems over symplectic manifolds, Amer. Math. Soc. Transl., AMS, Providence, R. I., 216 (2005), 137-239. |
[30] |
A. Weinstein, "Lectures on Symplectic Manifolds,'' CBMS Lecture Notes 29, Providence, R.I., AMS, 1977. |
[31] |
N. M. J. Woodhouse, "Integrability, Self-Duality and Twistor Theory,'' Clarendon Press, Oxford, 1996. |