March  2013, 33(3): 1089-1112. doi: 10.3934/dcds.2013.33.1089

Transition map and shadowing lemma for normally hyperbolic invariant manifolds

1. 

Departament de Matemática Aplicada I, ETSEIB-UPC, 08028 Barcelona

2. 

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States

3. 

Departament de Matemática Aplicada I, ETSEIB-UPC, 08028 Barcelona,, Spain

Received  April 2011 Revised  December 2011 Published  October 2012

For a given a normally hyperbolic invariant manifold, whose stable and unstable manifolds intersect transversally, we consider several tools and techniques to detect trajectories with prescribed itineraries: the scattering map, the transition map, the method of correctly aligned windows, and the shadowing lemma. We provide an user's guide on how to apply these tools and techniques to detect unstable orbits in a Hamiltonian system. This consists in the following steps: (i) computation of the scattering map and of the transition map for the Hamiltonian flow, (ii) reduction to the scattering map and to the transition map, respectively, for the return map to some surface of section, (iii) construction of sequences of windows within the surface of section, with the successive pairs of windows correctly aligned, alternately, under the transition map, and under some power of the inner map, (iv) detection of trajectories which follow closely those windows. We illustrate this strategy with two models: the large gap problem for nearly integrable Hamiltonian systems, and the the spatial circular restricted three-body problem.
Citation: Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089
References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom,, Sov. Math. Doklady, 5 (1964), 581.   Google Scholar

[2]

K. Burns and M. Gidea, "Differential Geometry and Topology. With a View to Dynamical Systems,'', Studies in Advanced Mathematics. Chapman & Hall/CRC, (2005).   Google Scholar

[3]

J. Cresson and C. Guillet, Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon,, J. Differential Equations, 244 (2008), 2123.  doi: 10.1016/j.jde.2008.02.009.  Google Scholar

[4]

A. Delshams, M. Gidea and P. Roldan, Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-numerical argument,, preprint, (2010).   Google Scholar

[5]

A. Delshams, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $T^2$,, Comm. Math. Phys., 209 (2000), 353.   Google Scholar

[6]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model,, Mem. Amer. Math. Soc., 179 (2006).   Google Scholar

[7]

A. Delshams, R. de la Llave and T. M. Seara, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, Adv. Math., 217 (2008), 1096.  doi: 10.1016/j.aim.2007.08.014.  Google Scholar

[8]

A. Delshams, M. Gidea, R. de la Llave and T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation,, in (Hamiltonian dynamical systems and applications), (2008), 285.   Google Scholar

[9]

A. Delshams, J. Masdemont and P. Roldán, Computing the scattering map in the spatial Hill's problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 455.  doi: 10.3934/dcdsb.2008.10.455.  Google Scholar

[10]

R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom,, J. Differential Equations, 29 (1978), 241.  doi: 10.1016/0022-0396(78)90123-7.  Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. J., 23 (): 1109.   Google Scholar

[12]

A. García, Transition tori near an elliptic fixed point,, Discrete Contin. Dynam. Systems, 6 (2000), 381.   Google Scholar

[13]

M. Gidea and R. de la Llave, Topological methods in the instability problem of Hamiltonian systems,, Discrete Contin. Dyn. Syst., 14 (2006), 295.   Google Scholar

[14]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori,, J. Differential Equations, 193 (2003), 49.  doi: 10.1016/S0022-0396(03)00065-2.  Google Scholar

[15]

M. Gidea and C. Robinson, Obstruction argument for transition chains of tori interspersed with gaps,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 393.   Google Scholar

[16]

M. Gidea, and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets,, Ergodic Theory and Dynamical Systems, ().  doi: 10.1017/S0143385712000363.  Google Scholar

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math., (1977).   Google Scholar

[18]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197.   Google Scholar

[19]

J. P. Marco, A normally hyperbolic lambda lemma with applications to diffusion,, Preprint, (2008).   Google Scholar

[20]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187.  doi: 10.1007/BF01403247.  Google Scholar

[21]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', Studies in Advanced Mathematics. CRC Press, (1999).   Google Scholar

[22]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.  doi: 10.1016/j.jde.2004.03.013.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom,, Sov. Math. Doklady, 5 (1964), 581.   Google Scholar

[2]

K. Burns and M. Gidea, "Differential Geometry and Topology. With a View to Dynamical Systems,'', Studies in Advanced Mathematics. Chapman & Hall/CRC, (2005).   Google Scholar

[3]

J. Cresson and C. Guillet, Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon,, J. Differential Equations, 244 (2008), 2123.  doi: 10.1016/j.jde.2008.02.009.  Google Scholar

[4]

A. Delshams, M. Gidea and P. Roldan, Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-numerical argument,, preprint, (2010).   Google Scholar

[5]

A. Delshams, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $T^2$,, Comm. Math. Phys., 209 (2000), 353.   Google Scholar

[6]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model,, Mem. Amer. Math. Soc., 179 (2006).   Google Scholar

[7]

A. Delshams, R. de la Llave and T. M. Seara, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, Adv. Math., 217 (2008), 1096.  doi: 10.1016/j.aim.2007.08.014.  Google Scholar

[8]

A. Delshams, M. Gidea, R. de la Llave and T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation,, in (Hamiltonian dynamical systems and applications), (2008), 285.   Google Scholar

[9]

A. Delshams, J. Masdemont and P. Roldán, Computing the scattering map in the spatial Hill's problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 455.  doi: 10.3934/dcdsb.2008.10.455.  Google Scholar

[10]

R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom,, J. Differential Equations, 29 (1978), 241.  doi: 10.1016/0022-0396(78)90123-7.  Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. J., 23 (): 1109.   Google Scholar

[12]

A. García, Transition tori near an elliptic fixed point,, Discrete Contin. Dynam. Systems, 6 (2000), 381.   Google Scholar

[13]

M. Gidea and R. de la Llave, Topological methods in the instability problem of Hamiltonian systems,, Discrete Contin. Dyn. Syst., 14 (2006), 295.   Google Scholar

[14]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori,, J. Differential Equations, 193 (2003), 49.  doi: 10.1016/S0022-0396(03)00065-2.  Google Scholar

[15]

M. Gidea and C. Robinson, Obstruction argument for transition chains of tori interspersed with gaps,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 393.   Google Scholar

[16]

M. Gidea, and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets,, Ergodic Theory and Dynamical Systems, ().  doi: 10.1017/S0143385712000363.  Google Scholar

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math., (1977).   Google Scholar

[18]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197.   Google Scholar

[19]

J. P. Marco, A normally hyperbolic lambda lemma with applications to diffusion,, Preprint, (2008).   Google Scholar

[20]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187.  doi: 10.1007/BF01403247.  Google Scholar

[21]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', Studies in Advanced Mathematics. CRC Press, (1999).   Google Scholar

[22]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.  doi: 10.1016/j.jde.2004.03.013.  Google Scholar

[1]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[2]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[3]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[4]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[5]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[6]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[7]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[8]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[9]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[10]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[11]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[12]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[13]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[16]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[17]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[18]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[19]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[20]

Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020369

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]