\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lyapunov inequalities for partial differential equations at radial higher eigenvalues

Abstract / Introduction Related Papers Cited by
  • This paper is devoted to the study of $L_{p}$ Lyapunov-type inequalities ($ \ 1 \leq p \leq +\infty$) for linear partial differential equations at radial higher eigenvalues. More precisely, we treat the case of Neumann boundary conditions on balls in $\Bbb{R}^{N}$. It is proved that the relation between the quantities $p$ and $N/2$ plays a crucial role to obtain nontrivial and optimal Lyapunov inequalities. By using appropriate minimizing sequences and a detailed analysis about the number and distribution of zeros of radial nontrivial solutions, we show significant qualitative differences according to the studied case is subcritical, supercritical or critical.
    Mathematics Subject Classification: Primary: 35J25, 35B07; Secondary: 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Cañada, J. A. Montero and S. Villegas, Liapunov-type inequalities and Neumann boundary value problems at resonance, Math. Inequal. Appl., 8 (2005), 459-475.

    [2]

    A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal., 237 (2006), 176-193.doi: 10.1016/j.jfa.2005.12.011.

    [3]

    A. Cañada and S. Villegas, Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues, J. Eur. Math. Soc. (JEMS), 12 (2010), 163-178.

    [4]

    M. del Pino and R. F. Manásevich, Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations, 92 (1991), 226-251.doi: 10.1016/0022-0396(91)90048-E.

    [5]

    C. L. Dolph, Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. Soc., 66 (1949), 289-307.doi: 10.1090/S0002-9947-1949-0032923-4.

    [6]

    B. Fuglede, Continuous domain dependence of the eigenvalues of the Dirichlet Laplacian and related operators in Hilbert space, J. Funct. Anal., 167 (1999), 183-200.doi: 10.1006/jfan.1999.3442.

    [7]

    P. Hartman, "Ordinary Differential Equations," John Wiley & Sons, Inc., New York-London-Sydney, 1964.

    [8]

    Y. Li and H. Z. Wang, Neumann boundary value problems for second-order ordinary differential equations across resonance, SIAM J. Control Optim., 33 (1995), 1312-1325.doi: 10.1137/S036301299324532X.

    [9]

    G. Vidossich, Existence and uniqueness results for boundary value problems from the comparison of eigenvalues, ICTP Preprint Archive, 1979015, (1979).

    [10]

    M. Zhang, Certain classes of potentials for $p$-Laplacian to be non-degenerate, Math. Nachr., 278 (2005), 1823-1836.doi: 10.1002/mana.200410342.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return