March  2013, 33(3): 1117-1135. doi: 10.3934/dcds.2013.33.1117

Discrete dynamics in implicit form

1. 

Unidad asociada ULL-CSIC “Geometría Diferencial y Mecánica Geométrica”, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain

2. 

Unidad asociada ULL-CSIC Geometría Diferencial y Mecánica Geométrica, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain

3. 

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Campus de Cantoblanco, UAM, C/Nicolás Cabrera, 15, 28049 Madrid, Spain

Received  April 2011 Revised  November 2011 Published  October 2012

A notion of implicit difference equation on a Lie groupoid is introduced and an algorithm for extracting the integrable part (backward or/and forward) is formulated. As an application, we prove that discrete Lagrangian dynamics on a Lie groupoid $G$ may be described in terms of Lagrangian implicit difference equations of the corresponding cotangent groupoid $T^*G$. Other situations include finite difference methods for time-dependent linear differential-algebraic equations and discrete nonholonomic Lagrangian systems, as parti-cular examples.
Citation: David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117
References:
[1]

C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations,", Kluwer Texts in the Mathematical Sciences, (1996).   Google Scholar

[2]

J. F. Cariñena, Theory of singular lagrangians,, Fortschr. Phys., 38 (1990), 641.  doi: 10.1002/prop.2190380902.  Google Scholar

[3]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975.  doi: 10.1088/0305-4470/39/35/003.  Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Soc., 152 (2001).   Google Scholar

[5]

A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques,, (French) [Symplectic groupoids], 2/A (1987), 1.   Google Scholar

[6]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[7]

Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem,, SIGMA, 3 (2007).   Google Scholar

[8]

Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups,, Nonli-nearity, 18 (2005), 2211.   Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", Springer Series in Computational Mathematics vol. 31, (2002).   Google Scholar

[10]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids,, J. Nonlinear Sci, 18 (2008), 221.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[11]

D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids,, Dynamical Systems, 23 (2008), 351.   Google Scholar

[12]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[13]

K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series vol. 213, (2005).   Google Scholar

[14]

G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form,, Ann. Inst. Henri Poincaré, 57 (1992), 147.   Google Scholar

[15]

G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A: Math. Gen. 30 (1995), 30 (1995), 149.   Google Scholar

[16]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A: Math. Gen., 30 (1997), 277.  doi: 10.1088/0305-4470/30/1/020.  Google Scholar

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[18]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.  doi: 10.1088/0951-7715/19/6/006.  Google Scholar

[19]

J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete lagrangian function on Lie groupoids and some applications,, work in progress., ().   Google Scholar

[20]

J. C. Marrero, D. Martín de Diego and A. Stern, Lagrangian submanifolds and discrete constrained mechanics on Lie groupoids,, preprint, ().   Google Scholar

[21]

J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems,", Translation of Mathematics Monographs, (1972).   Google Scholar

[22]

L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications,, SIAM J. Sci. Statist. Comput., 7 (1986), 720.   Google Scholar

[23]

P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations,, Appl. Math. Lett., 7 (1994), 29.   Google Scholar

[24]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman & Hall, (1994).   Google Scholar

[25]

A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids,, J. Symplectic Geom., 8 (2010), 225.   Google Scholar

[26]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne,, C. R. Acad. Sci. Paris, 283 (1976), 15.   Google Scholar

[27]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne,, C. R. Acad. Sci. Paris, 283 (1976), 675.   Google Scholar

[28]

A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705.  doi: 10.2969/jmsj/04040705.  Google Scholar

[29]

A. Weinstein, Lagrangian mechanics and groupoids,, Fields Inst. Comm., 7 (1996), 207.   Google Scholar

show all references

References:
[1]

C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations,", Kluwer Texts in the Mathematical Sciences, (1996).   Google Scholar

[2]

J. F. Cariñena, Theory of singular lagrangians,, Fortschr. Phys., 38 (1990), 641.  doi: 10.1002/prop.2190380902.  Google Scholar

[3]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975.  doi: 10.1088/0305-4470/39/35/003.  Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Soc., 152 (2001).   Google Scholar

[5]

A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques,, (French) [Symplectic groupoids], 2/A (1987), 1.   Google Scholar

[6]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[7]

Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem,, SIGMA, 3 (2007).   Google Scholar

[8]

Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups,, Nonli-nearity, 18 (2005), 2211.   Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", Springer Series in Computational Mathematics vol. 31, (2002).   Google Scholar

[10]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids,, J. Nonlinear Sci, 18 (2008), 221.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[11]

D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids,, Dynamical Systems, 23 (2008), 351.   Google Scholar

[12]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[13]

K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series vol. 213, (2005).   Google Scholar

[14]

G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form,, Ann. Inst. Henri Poincaré, 57 (1992), 147.   Google Scholar

[15]

G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A: Math. Gen. 30 (1995), 30 (1995), 149.   Google Scholar

[16]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A: Math. Gen., 30 (1997), 277.  doi: 10.1088/0305-4470/30/1/020.  Google Scholar

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[18]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.  doi: 10.1088/0951-7715/19/6/006.  Google Scholar

[19]

J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete lagrangian function on Lie groupoids and some applications,, work in progress., ().   Google Scholar

[20]

J. C. Marrero, D. Martín de Diego and A. Stern, Lagrangian submanifolds and discrete constrained mechanics on Lie groupoids,, preprint, ().   Google Scholar

[21]

J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems,", Translation of Mathematics Monographs, (1972).   Google Scholar

[22]

L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications,, SIAM J. Sci. Statist. Comput., 7 (1986), 720.   Google Scholar

[23]

P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations,, Appl. Math. Lett., 7 (1994), 29.   Google Scholar

[24]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman & Hall, (1994).   Google Scholar

[25]

A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids,, J. Symplectic Geom., 8 (2010), 225.   Google Scholar

[26]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne,, C. R. Acad. Sci. Paris, 283 (1976), 15.   Google Scholar

[27]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne,, C. R. Acad. Sci. Paris, 283 (1976), 675.   Google Scholar

[28]

A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705.  doi: 10.2969/jmsj/04040705.  Google Scholar

[29]

A. Weinstein, Lagrangian mechanics and groupoids,, Fields Inst. Comm., 7 (1996), 207.   Google Scholar

[1]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[2]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[3]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[4]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[5]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[8]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[12]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[19]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[20]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

[Back to Top]