-
Previous Article
Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses
- DCDS Home
- This Issue
-
Next Article
Are the geometries of the first and second laws of thermodynamics compatible?
Discrete dynamics in implicit form
1. | Unidad asociada ULL-CSIC “Geometría Diferencial y Mecánica Geométrica”, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain |
2. | Unidad asociada ULL-CSIC Geometría Diferencial y Mecánica Geométrica, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain |
3. | Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Campus de Cantoblanco, UAM, C/Nicolás Cabrera, 15, 28049 Madrid, Spain |
References:
[1] |
C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations,", Kluwer Texts in the Mathematical Sciences, (1996).
|
[2] |
J. F. Cariñena, Theory of singular lagrangians,, Fortschr. Phys., 38 (1990), 641.
doi: 10.1002/prop.2190380902. |
[3] |
H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975.
doi: 10.1088/0305-4470/39/35/003. |
[4] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Soc., 152 (2001).
|
[5] |
A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques,, (French) [Symplectic groupoids], 2/A (1987), 1.
|
[6] |
M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575.
doi: 10.4007/annals.2003.157.575. |
[7] |
Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem,, SIGMA, 3 (2007).
|
[8] |
Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups,, Nonli-nearity, 18 (2005), 2211.
|
[9] |
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", Springer Series in Computational Mathematics vol. 31, (2002).
|
[10] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids,, J. Nonlinear Sci, 18 (2008), 221.
doi: 10.1007/s00332-007-9012-8. |
[11] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids,, Dynamical Systems, 23 (2008), 351.
|
[12] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).
doi: 10.1088/0305-4470/38/24/R01. |
[13] |
K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series vol. 213, (2005).
|
[14] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form,, Ann. Inst. Henri Poincaré, 57 (1992), 147.
|
[15] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A: Math. Gen. 30 (1995), 30 (1995), 149.
|
[16] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A: Math. Gen., 30 (1997), 277.
doi: 10.1088/0305-4470/30/1/020. |
[17] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.
doi: 10.1017/S096249290100006X. |
[18] |
J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.
doi: 10.1088/0951-7715/19/6/006. |
[19] |
J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete lagrangian function on Lie groupoids and some applications,, work in progress., (). Google Scholar |
[20] |
J. C. Marrero, D. Martín de Diego and A. Stern, Lagrangian submanifolds and discrete constrained mechanics on Lie groupoids,, preprint, (). Google Scholar |
[21] |
J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems,", Translation of Mathematics Monographs, (1972). Google Scholar |
[22] |
L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications,, SIAM J. Sci. Statist. Comput., 7 (1986), 720.
|
[23] |
P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations,, Appl. Math. Lett., 7 (1994), 29.
|
[24] |
J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman & Hall, (1994).
|
[25] |
A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids,, J. Symplectic Geom., 8 (2010), 225.
|
[26] |
W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne,, C. R. Acad. Sci. Paris, 283 (1976), 15.
|
[27] |
W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne,, C. R. Acad. Sci. Paris, 283 (1976), 675.
|
[28] |
A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705.
doi: 10.2969/jmsj/04040705. |
[29] |
A. Weinstein, Lagrangian mechanics and groupoids,, Fields Inst. Comm., 7 (1996), 207.
|
show all references
References:
[1] |
C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations,", Kluwer Texts in the Mathematical Sciences, (1996).
|
[2] |
J. F. Cariñena, Theory of singular lagrangians,, Fortschr. Phys., 38 (1990), 641.
doi: 10.1002/prop.2190380902. |
[3] |
H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975.
doi: 10.1088/0305-4470/39/35/003. |
[4] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Soc., 152 (2001).
|
[5] |
A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques,, (French) [Symplectic groupoids], 2/A (1987), 1.
|
[6] |
M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575.
doi: 10.4007/annals.2003.157.575. |
[7] |
Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem,, SIGMA, 3 (2007).
|
[8] |
Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups,, Nonli-nearity, 18 (2005), 2211.
|
[9] |
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", Springer Series in Computational Mathematics vol. 31, (2002).
|
[10] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids,, J. Nonlinear Sci, 18 (2008), 221.
doi: 10.1007/s00332-007-9012-8. |
[11] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids,, Dynamical Systems, 23 (2008), 351.
|
[12] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).
doi: 10.1088/0305-4470/38/24/R01. |
[13] |
K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series vol. 213, (2005).
|
[14] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form,, Ann. Inst. Henri Poincaré, 57 (1992), 147.
|
[15] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A: Math. Gen. 30 (1995), 30 (1995), 149.
|
[16] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A: Math. Gen., 30 (1997), 277.
doi: 10.1088/0305-4470/30/1/020. |
[17] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.
doi: 10.1017/S096249290100006X. |
[18] |
J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.
doi: 10.1088/0951-7715/19/6/006. |
[19] |
J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete lagrangian function on Lie groupoids and some applications,, work in progress., (). Google Scholar |
[20] |
J. C. Marrero, D. Martín de Diego and A. Stern, Lagrangian submanifolds and discrete constrained mechanics on Lie groupoids,, preprint, (). Google Scholar |
[21] |
J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems,", Translation of Mathematics Monographs, (1972). Google Scholar |
[22] |
L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications,, SIAM J. Sci. Statist. Comput., 7 (1986), 720.
|
[23] |
P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations,, Appl. Math. Lett., 7 (1994), 29.
|
[24] |
J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman & Hall, (1994).
|
[25] |
A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids,, J. Symplectic Geom., 8 (2010), 225.
|
[26] |
W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne,, C. R. Acad. Sci. Paris, 283 (1976), 15.
|
[27] |
W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne,, C. R. Acad. Sci. Paris, 283 (1976), 675.
|
[28] |
A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705.
doi: 10.2969/jmsj/04040705. |
[29] |
A. Weinstein, Lagrangian mechanics and groupoids,, Fields Inst. Comm., 7 (1996), 207.
|
[1] |
Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367 |
[2] |
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 |
[3] |
Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105 |
[4] |
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 |
[5] |
Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064 |
[6] |
Víctor Manuel Jiménez Morales, Manuel De León, Marcelo Epstein. Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies. Journal of Geometric Mechanics, 2019, 11 (3) : 301-324. doi: 10.3934/jgm.2019017 |
[7] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[8] |
P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1 |
[9] |
Farid Tari. Two-parameter families of implicit differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139 |
[10] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[11] |
Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009 |
[12] |
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323 |
[13] |
Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 |
[14] |
Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829 |
[15] |
Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549 |
[16] |
Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55 |
[17] |
Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959 |
[18] |
Luca Capogna. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic Research Announcements, 1996, 2: 60-68. |
[19] |
Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485 |
[20] |
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]