-
Previous Article
On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$
- DCDS Home
- This Issue
-
Next Article
Discrete dynamics in implicit form
Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses
1. | Department of Mathematics, Queen's University, Kingston, Ontario K7L 4V1, Canada |
2. | Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4, Canada, Canada |
References:
[1] |
Funct. Anal. Appl., 1 (1967), 1-14.
doi: 10.1007/BF01075861. |
[2] |
Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 1988. |
[3] |
Funct. Anal. Appl., 19 (1985), 251-259. |
[4] |
Celest. Mech. Dynam. Astron., 95 (2006), 55-66.
doi: 10.1007/s10569-006-9016-y. |
[5] |
P. L. Buono, M. Kovacic, M. Lewis and D. Offin, Symmetry-breaking bifurcations of the hip-hop orbit,, in preparation., (). Google Scholar |
[6] |
Ann. Math., 152 (2000), 881-901.
doi: 10.2307/2661357. |
[7] |
Celest. Mech. Dynam. Astron., 77 (2000), 139-152.
doi: 10.1023/A:1008381001328. |
[8] |
Reviews in Math. Physics, 6 (1994), 1187-1232.
doi: 10.1142/S0129055X94000432. |
[9] |
Adv. Math., 21 (1976) 173-195.
doi: 10.1016/0001-8708(76)90074-8. |
[10] |
Springer-Verlag, New York, 1991. Google Scholar |
[11] |
Inv. Math., 155 (2004), 305-362.
doi: 10.1007/s00222-003-0322-7. |
[12] |
Amer. J. Math., 99 (1970), 961-971.
doi: 10.2307/2373993. |
[13] |
Comm. Math. Phys., 290 (2009), 737-777.
doi: 10.1007/s00220-009-0860-y. |
[14] |
Springer-Verlag, New York, 1991. Google Scholar |
[15] |
Celest. Mech. Dynam. Astron., 83 (2002), 325-353.
doi: 10.1023/A:1020128408706. |
[16] |
(Russian), MGU, Moscow, 1965. Google Scholar |
[17] |
J. Diff. Eqns., 41 (1981), 228-238.
doi: 10.1016/0022-0396(81)90059-0. |
[18] |
Celest. Mech. Dynam. Astron., 55 (1993), 289-303.
doi: 10.1007/BF00692516. |
[19] |
Trans. Amer. Math. Soc., 352 (2000), 3323-3338.
doi: 10.1090/S0002-9947-00-02483-1. |
[20] |
Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 379-392.
doi: 10.3934/dcdss.2009.2.379. |
[21] |
Ergod. Th. & Dynam. Sys., 27 (2007), 1947-1963. |
[22] |
Contemp. Math., 292 (2002), 209-228.
doi: 10.1090/conm/292/04926. |
[23] |
Arch. Rational. Mech. Anal., 184 (2007), 465-493.
doi: 10.1007/s00205-006-0030-8. |
show all references
References:
[1] |
Funct. Anal. Appl., 1 (1967), 1-14.
doi: 10.1007/BF01075861. |
[2] |
Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 1988. |
[3] |
Funct. Anal. Appl., 19 (1985), 251-259. |
[4] |
Celest. Mech. Dynam. Astron., 95 (2006), 55-66.
doi: 10.1007/s10569-006-9016-y. |
[5] |
P. L. Buono, M. Kovacic, M. Lewis and D. Offin, Symmetry-breaking bifurcations of the hip-hop orbit,, in preparation., (). Google Scholar |
[6] |
Ann. Math., 152 (2000), 881-901.
doi: 10.2307/2661357. |
[7] |
Celest. Mech. Dynam. Astron., 77 (2000), 139-152.
doi: 10.1023/A:1008381001328. |
[8] |
Reviews in Math. Physics, 6 (1994), 1187-1232.
doi: 10.1142/S0129055X94000432. |
[9] |
Adv. Math., 21 (1976) 173-195.
doi: 10.1016/0001-8708(76)90074-8. |
[10] |
Springer-Verlag, New York, 1991. Google Scholar |
[11] |
Inv. Math., 155 (2004), 305-362.
doi: 10.1007/s00222-003-0322-7. |
[12] |
Amer. J. Math., 99 (1970), 961-971.
doi: 10.2307/2373993. |
[13] |
Comm. Math. Phys., 290 (2009), 737-777.
doi: 10.1007/s00220-009-0860-y. |
[14] |
Springer-Verlag, New York, 1991. Google Scholar |
[15] |
Celest. Mech. Dynam. Astron., 83 (2002), 325-353.
doi: 10.1023/A:1020128408706. |
[16] |
(Russian), MGU, Moscow, 1965. Google Scholar |
[17] |
J. Diff. Eqns., 41 (1981), 228-238.
doi: 10.1016/0022-0396(81)90059-0. |
[18] |
Celest. Mech. Dynam. Astron., 55 (1993), 289-303.
doi: 10.1007/BF00692516. |
[19] |
Trans. Amer. Math. Soc., 352 (2000), 3323-3338.
doi: 10.1090/S0002-9947-00-02483-1. |
[20] |
Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 379-392.
doi: 10.3934/dcdss.2009.2.379. |
[21] |
Ergod. Th. & Dynam. Sys., 27 (2007), 1947-1963. |
[22] |
Contemp. Math., 292 (2002), 209-228.
doi: 10.1090/conm/292/04926. |
[23] |
Arch. Rational. Mech. Anal., 184 (2007), 465-493.
doi: 10.1007/s00205-006-0030-8. |
[1] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002 |
[2] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001 |
[3] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[4] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[5] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[6] |
Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044 |
[7] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[8] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[9] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[10] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[11] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[12] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[13] |
Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034 |
[14] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[15] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021082 |
[16] |
Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006 |
[17] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[18] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 |
[19] |
Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021086 |
[20] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]