\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses

Abstract Related Papers Cited by
  • The hip-hop orbit is an interesting symmetric periodic family of orbits whereby the global existence methods of variational analysis applied to the N-body problem result in a collision free solution of (1). Perturbation techniques have been applied to study families of hip-hop like orbits bifurcating from a uniformly rotating planar 2N-gon [4] with equal masses, or a uniformly rotating planar 2N+1 body relative equilibrium with a large central mass [18]. We study the question of stability or instability for symmetric periodic solutions of the equal mass $2N$-body problem without perturbation methods. The hip-hop family is a family of $\mathbb{Z}_2$-symmetric action minimizing solutions, investigated by [7,23], and is shown to be generically hyperbolic on its reduced energy-momentum surface. We employ techniques from symplectic geometry and specifically a variant of the Maslov index for curves of Lagrangian subspaces along the minimizing hip-hop orbit to develop conditions which preclude the existence of eigenvalues of the monodromy matrix on the unit circle.
    Mathematics Subject Classification: 34C35, 34C27, 54H20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnol'd, Characteristic class entering in quantization conditions, Funct. Anal. Appl., 1 (1967), 1-14.doi: 10.1007/BF01075861.

    [2]

    V. I. Arnol'd, "Dynamical Systems III," Encyclopaedia Math. Sci., 3, Springer-Verlag, Berlin, 1988.

    [3]

    V. I. Arnol'd, Sturm theorems and symplectic geometry, Funct. Anal. Appl., 19 (1985), 251-259.

    [4]

    E. Barrabés, J. M. Cors, C. Pinyol and J. Soler, Hip-hop solutions of the 2N-body problem, Celest. Mech. Dynam. Astron., 95 (2006), 55-66.doi: 10.1007/s10569-006-9016-y.

    [5]

    P. L. Buono, M. Kovacic, M. Lewis and D. OffinSymmetry-breaking bifurcations of the hip-hop orbit, in preparation.

    [6]

    A. Chenciner and R. Montgomery, On a remarkable periodic orbit of the three body problem in the case of equal masses, Ann. Math., 152 (2000), 881-901.doi: 10.2307/2661357.

    [7]

    A. Chenciner and A. Venturelli, Minima de l'intégrale d'action du problème Newtonien de 4 corps de masses égales dans $\mathbbR^3$: orbites 'hip-hop', Celest. Mech. Dynam. Astron., 77 (2000), 139-152.doi: 10.1023/A:1008381001328.

    [8]

    G. F. Dell'Antonio, Variational calculus and stability of periodic solutions of a class of Hamiltonian systems, Reviews in Math. Physics, 6 (1994), 1187-1232.doi: 10.1142/S0129055X94000432.

    [9]

    J. J. Duistermaat, On the morse index in variational calculus, Adv. Math., 21 (1976) 173-195.doi: 10.1016/0001-8708(76)90074-8.

    [10]

    I. Ekeland, "Convexity Methods in Hamiltonian Systems," Springer-Verlag, New York, 1991.

    [11]

    D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem, Inv. Math., 155 (2004), 305-362.doi: 10.1007/s00222-003-0322-7.

    [12]

    W. B. Gordon, A minimizing property of Keplerian orbits, Amer. J. Math., 99 (1970), 961-971.doi: 10.2307/2373993.

    [13]

    X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit, Comm. Math. Phys., 290 (2009), 737-777.doi: 10.1007/s00220-009-0860-y.

    [14]

    J. Marsden, "Lectures on Mechanics," Springer-Verlag, New York, 1991.

    [15]

    C. Marchal, How the method of minimization of action avoids singularities, Celest. Mech. Dynam. Astron., 83 (2002), 325-353.doi: 10.1023/A:1020128408706.

    [16]

    V. P. Maslov, "Theory of Perturbations and Asymptotic Methods," (Russian), MGU, Moscow, 1965.

    [17]

    K. R. Meyer, Hamiltonian systems with a discrete symmetry, J. Diff. Eqns., 41 (1981), 228-238.doi: 10.1016/0022-0396(81)90059-0.

    [18]

    K. R. Meyer and D. S. Schmidt, Librations of central configurations and braided Saturn rings, Celest. Mech. Dynam. Astron., 55 (1993), 289-303.doi: 10.1007/BF00692516.

    [19]

    D. C. Offin, Hyperbolic minimizing geodesics, Trans. Amer. Math. Soc., 352 (2000), 3323-3338.doi: 10.1090/S0002-9947-00-02483-1.

    [20]

    D. C. Offin and H. Cabral, Hyperbolicity for symmetric periodic orbits in the isosceles three body problem, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 379-392.doi: 10.3934/dcdss.2009.2.379.

    [21]

    G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergod. Th. & Dynam. Sys., 27 (2007), 1947-1963.

    [22]

    C. Simó, Dynamical properties of the figure eight solution of the three body problem, Contemp. Math., 292 (2002), 209-228.doi: 10.1090/conm/292/04926.

    [23]

    S. Terracini and A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses, Arch. Rational. Mech. Anal., 184 (2007), 465-493.doi: 10.1007/s00205-006-0030-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(304) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return