April  2013, 33(4): 1231-1246. doi: 10.3934/dcds.2013.33.1231

Critical points of functionalized Lagrangians

1. 

Department of Mathematics, Michigan State University, East Lansing, MI, 48824

2. 

Nico Holding LLC, 222 W. Adams Street, Chicago, IL, 60606, United States

Received  September 2011 Revised  October 2011 Published  October 2012

We present a novel class of higher order energies motivated by the study of network formation in binary mixtures of functionalized polymers and solvent. For a broad class of Lagrangians, we introduce their functionalized form, which is a higher order energy balancing the square of the variational derivative against the original energy. We show that the functionalized energies have global minimizers over several natural spaces of admissible functions. The critical points of the functionalized Lagrangian contain those of the original Lagrangian, however we demonstrate that for a sufficient strength of the functionalization all the critical points of the original Lagrangian are saddle points of the functionalized Lagrangian, and the global minima is a new structure.
Citation: Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231
References:
[1]

J. Chem. Phys., 28 (1958), 258-267. Google Scholar

[2]

J. Theor. Biol., 26 (1970), 61-81. doi: 10.1016/S0022-5193(70)80032-7.  Google Scholar

[3]

Nano Letters, 9 (2009), 2807-2812. doi: 10.1021/nl803174p.  Google Scholar

[4]

Nonlinearity, 18 (2005), 1249-1267.  Google Scholar

[5]

American Mathematical Society, Providence, R. I., 2000.  Google Scholar

[6]

Physica D, 240 (2011), 675-693. doi: 10.1016/j.physd.2010.11.016.  Google Scholar

[7]

Phys. Rev. Lett., 65 (1990), 1116-1119. doi: 10.1103/PhysRevLett.65.1116.  Google Scholar

[8]

Zeitshcrift fur naturforschung C, 28 (1973), 693-703. Google Scholar

[9]

J. Membrane Science, 13 (1983), 307-326. doi: 10.1016/S0376-7388(00)81563-X.  Google Scholar

[10]

Solar Energy Materials & Solar cells, 93 (2009), 2003-2007. Google Scholar

[11]

SIAM Journal Math. Anal., 37 (2005), 712-736. doi: 10.1016/j.ijpharm.2004.11.015.  Google Scholar

[12]

Arch. Rational. Mech. Anal., 98 (1987), 123-142.  Google Scholar

[13]

Accounts of Chemical Research, 42 (2009), 1700-1708. doi: 10.1016/j.ssc.2008.12.019.  Google Scholar

[14]

SIAM Math. Analysis, 70 (2009), 369-409.  Google Scholar

[15]

Math. Z., 254 (2006), 675-714.  Google Scholar

[16]

L. Rubatat, G. Gebel and O. Diat, Fibriallar structure of Nafion: Matching Fourier and real space studies of corresponding films and solutions,, Macromolecules, 2004 (): 7772.   Google Scholar

[17]

in "Morphology of Condensed Matter: Physics and Geometry of spatially complex systems" (eds. K. R. Mecke and D. Stoyan), 107-151, Springer Lecture Notes in Physics, 600 (2002). Google Scholar

[18]

Arch. Rational Mech. Anal., 101 (1988), 209-260.  Google Scholar

[19]

Springer-Verlag, Berlin, 1990.  Google Scholar

show all references

References:
[1]

J. Chem. Phys., 28 (1958), 258-267. Google Scholar

[2]

J. Theor. Biol., 26 (1970), 61-81. doi: 10.1016/S0022-5193(70)80032-7.  Google Scholar

[3]

Nano Letters, 9 (2009), 2807-2812. doi: 10.1021/nl803174p.  Google Scholar

[4]

Nonlinearity, 18 (2005), 1249-1267.  Google Scholar

[5]

American Mathematical Society, Providence, R. I., 2000.  Google Scholar

[6]

Physica D, 240 (2011), 675-693. doi: 10.1016/j.physd.2010.11.016.  Google Scholar

[7]

Phys. Rev. Lett., 65 (1990), 1116-1119. doi: 10.1103/PhysRevLett.65.1116.  Google Scholar

[8]

Zeitshcrift fur naturforschung C, 28 (1973), 693-703. Google Scholar

[9]

J. Membrane Science, 13 (1983), 307-326. doi: 10.1016/S0376-7388(00)81563-X.  Google Scholar

[10]

Solar Energy Materials & Solar cells, 93 (2009), 2003-2007. Google Scholar

[11]

SIAM Journal Math. Anal., 37 (2005), 712-736. doi: 10.1016/j.ijpharm.2004.11.015.  Google Scholar

[12]

Arch. Rational. Mech. Anal., 98 (1987), 123-142.  Google Scholar

[13]

Accounts of Chemical Research, 42 (2009), 1700-1708. doi: 10.1016/j.ssc.2008.12.019.  Google Scholar

[14]

SIAM Math. Analysis, 70 (2009), 369-409.  Google Scholar

[15]

Math. Z., 254 (2006), 675-714.  Google Scholar

[16]

L. Rubatat, G. Gebel and O. Diat, Fibriallar structure of Nafion: Matching Fourier and real space studies of corresponding films and solutions,, Macromolecules, 2004 (): 7772.   Google Scholar

[17]

in "Morphology of Condensed Matter: Physics and Geometry of spatially complex systems" (eds. K. R. Mecke and D. Stoyan), 107-151, Springer Lecture Notes in Physics, 600 (2002). Google Scholar

[18]

Arch. Rational Mech. Anal., 101 (1988), 209-260.  Google Scholar

[19]

Springer-Verlag, Berlin, 1990.  Google Scholar

[1]

Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030

[2]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021034

[3]

Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021032

[4]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031

[5]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[6]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[7]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[8]

Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021010

[9]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[10]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[11]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[12]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[13]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[14]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[15]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[16]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[17]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[18]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[19]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[20]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]