April  2013, 33(4): 1247-1273. doi: 10.3934/dcds.2013.33.1247

Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups

1. 

Faculdade de Matemática - Universidade Federal de Uberlândia, Campus Santa Mônica, Av. João Naves de Ávila - 2121 38.408-100, Uberlândia - MG, Brazil

2. 

Imecc - Unicamp, Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz 13083-859, Campinas - SP, Brazil

Received  September 2011 Revised  January 2012 Published  October 2012

Let $Q\rightarrow X$ be a principal bundle having as structural group $G$ a reductive Lie group in the Harish-Chandra class that includes the case when $G$ is semi-simple with finite center. A semiflow $\phi _{k}$ of endomorphisms of $Q$ induces a semiflow $\psi _{k}$ on the associated bundle $\mathbb{E}=Q\times _{G}\mathbb{F}$, where $\mathbb{F}$ is the maximal flag bundle of $G$. The $A$-component of the Iwasawa decomposition $G=KAN$ yields an additive vector valued cocycle $\mathsf{a}\left( k,\xi \right) $, $\xi \in \mathbb{E}$, over $\psi _{k}$ with values in the Lie algebra $\mathfrak{a}$ of $A$. We prove the Multiplicative Ergodic Theorem of Oseledets for this cocycle: If $\nu $ is a probability measure invariant by the semiflow on $X$ then the $\mathfrak{a}$-Lyapunov exponent $\lambda \left( \xi \right) =\lim \frac{1}{k}\mathsf{a}\left( k,\xi \right) $ exists for every $\xi $ on the fibers above a set of full $\nu $-measure. The level sets of $\lambda \left( \cdot \right) $ on the fibers are described in algebraic terms. When $\phi _{k}$ is a flow the description of the level sets is sharpened. We relate the cocycle $\mathsf{a}\left( k,\xi \right) $ with the Lyapunov exponents of a linear flow on a vector bundle and other growth rates.
Citation: Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247
References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

L. Arnold, N. D. Cong and V. I. Oseledets, Jordan normal form for linear cocycles,, Random Oper. Stochastic Equations, 7 (1999), 303.   Google Scholar

[3]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkhäuser, (2000).  doi: 10.1007/978-1-4612-1350-5_3.  Google Scholar

[4]

J. J. Duistermat, J. A. C. Kolk and V. S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups,, Compositio Math., 49 (1983), 309.   Google Scholar

[5]

R. Feres, "Dynamical Systems and Semisimple Groups: An Introduction,", Cambridge University Press, (1998).  doi: 10.5840/ancientphil199818243.  Google Scholar

[6]

Y. Guivarch, L. Ji and J. C. Taylor, "Compactifications of Symmetric Spaces,", Progress in Mathematics, (1998).   Google Scholar

[7]

S. Helgason, "Groups and Geometric Analysis,", Academic Press, (1984).   Google Scholar

[8]

J. Hilgert and G. Ólafsson, "Causal Symmetric Spaces,", Geometry and Harmonic Analysis, 18 (1997).   Google Scholar

[9]

V. A. Kaimanovich, Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semisimple lie groups,, J. Soviet Math., 47 (1989), 2387.  doi: 10.1007/BF01840421.  Google Scholar

[10]

A. Karlsson and G. A. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces,, Communications in Mathematical Physics, 208 (1999), 107.  doi: 10.1007/s002200050750.  Google Scholar

[11]

A. W. Knapp, "Lie Groups: Beyond an Introduction,", Second Edition, 140 (2004).   Google Scholar

[12]

G. Link, "Limit Sets of Discrete Groups Acting on Symmetric Spaces,", Ph.D thesis, (2002).   Google Scholar

[13]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", vol. I, (1963).   Google Scholar

[14]

M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem,, Israel J. Math., 32 (1979), 356.   Google Scholar

[15]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publ. Math. IHES, 50 (1979), 27.  doi: 10.1007/BF00587200.  Google Scholar

[16]

L. A. B. San Martin, Maximal semigroups in semi-simple lie groups,, Trans. Amer. Math. Soc., 353 (2001), 5165.   Google Scholar

[17]

L. A. B. San Martin, Nonexistence of invariant semigroups in affine symmetric spaces,, Math. Ann., 321 (2001), 587.  doi: 10.1016/S0039-6028(01)00812-3.  Google Scholar

[18]

L. A. B. San Martin and L. Seco, Morse and Lyapunov spectra and dynamics on flag bundles,, Ergodic Theory & Dynamical Systems, 30 (2010), 893.  doi: 10.1017/S0143385709000285.  Google Scholar

[19]

G. Warner, "Harmonic Analysis on Semi-simple Lie Groups I,", Springer-Verlag, (1972).  doi: 10.1007/978-3-642-50275-0.  Google Scholar

[20]

R.Zimmer, Ergodic theory and semisimple groups,, Monographs in Mathematics, 81 (1984).   Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

L. Arnold, N. D. Cong and V. I. Oseledets, Jordan normal form for linear cocycles,, Random Oper. Stochastic Equations, 7 (1999), 303.   Google Scholar

[3]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkhäuser, (2000).  doi: 10.1007/978-1-4612-1350-5_3.  Google Scholar

[4]

J. J. Duistermat, J. A. C. Kolk and V. S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups,, Compositio Math., 49 (1983), 309.   Google Scholar

[5]

R. Feres, "Dynamical Systems and Semisimple Groups: An Introduction,", Cambridge University Press, (1998).  doi: 10.5840/ancientphil199818243.  Google Scholar

[6]

Y. Guivarch, L. Ji and J. C. Taylor, "Compactifications of Symmetric Spaces,", Progress in Mathematics, (1998).   Google Scholar

[7]

S. Helgason, "Groups and Geometric Analysis,", Academic Press, (1984).   Google Scholar

[8]

J. Hilgert and G. Ólafsson, "Causal Symmetric Spaces,", Geometry and Harmonic Analysis, 18 (1997).   Google Scholar

[9]

V. A. Kaimanovich, Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semisimple lie groups,, J. Soviet Math., 47 (1989), 2387.  doi: 10.1007/BF01840421.  Google Scholar

[10]

A. Karlsson and G. A. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces,, Communications in Mathematical Physics, 208 (1999), 107.  doi: 10.1007/s002200050750.  Google Scholar

[11]

A. W. Knapp, "Lie Groups: Beyond an Introduction,", Second Edition, 140 (2004).   Google Scholar

[12]

G. Link, "Limit Sets of Discrete Groups Acting on Symmetric Spaces,", Ph.D thesis, (2002).   Google Scholar

[13]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", vol. I, (1963).   Google Scholar

[14]

M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem,, Israel J. Math., 32 (1979), 356.   Google Scholar

[15]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publ. Math. IHES, 50 (1979), 27.  doi: 10.1007/BF00587200.  Google Scholar

[16]

L. A. B. San Martin, Maximal semigroups in semi-simple lie groups,, Trans. Amer. Math. Soc., 353 (2001), 5165.   Google Scholar

[17]

L. A. B. San Martin, Nonexistence of invariant semigroups in affine symmetric spaces,, Math. Ann., 321 (2001), 587.  doi: 10.1016/S0039-6028(01)00812-3.  Google Scholar

[18]

L. A. B. San Martin and L. Seco, Morse and Lyapunov spectra and dynamics on flag bundles,, Ergodic Theory & Dynamical Systems, 30 (2010), 893.  doi: 10.1017/S0143385709000285.  Google Scholar

[19]

G. Warner, "Harmonic Analysis on Semi-simple Lie Groups I,", Springer-Verlag, (1972).  doi: 10.1007/978-3-642-50275-0.  Google Scholar

[20]

R.Zimmer, Ergodic theory and semisimple groups,, Monographs in Mathematics, 81 (1984).   Google Scholar

[1]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[2]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[5]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[6]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[9]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[10]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[11]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[12]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[13]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]