-
Previous Article
Entropy of endomorphisms of Lie groups
- DCDS Home
- This Issue
-
Next Article
Dynamics of continued fractions and kneading sequences of unimodal maps
Semigroup representations in holomorphic dynamics
1. | Instituto de Matemáticas., Unidad Cuernavaca. UNAM, Av. Universidad s/n. Col. Lomas de Chamilpa, C. P. 62210, Cuernavaca, Morelos, Mexico |
2. | Instituto de Matemáticas, Unidad Cuernavaca. UNAM, Av. Universidad s/n. Col. Lomas de Chamilpa, C.P. 62210, Cuernavaca, Morelos |
3. | Mathematisches Institut, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany |
References:
[1] |
A. F. Beardon and T. W. Ng, On Ritt's factorization of polynomials, J. London Math. Soc. (2), 62 (2000), 127-138.
doi: 10.1093/rpc/2000rpc587. |
[2] |
C. Cabrera and P. Makienko, On dynamical Teichmüller spaces, Conf. Geom and Dyn., 14 (2010), 256-268.
doi: 10.1090/S1088-4173-2010-00214-6. |
[3] |
A. Douady, Systèmes dynamiques holomorphes, Bourbaki seminar, 1982/83, Astèrisque, 105, Soc. Math. France, Paris, (1983), 39-63. |
[4] |
A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297.
doi: 10.1007/BF02392534. |
[5] |
A. Eremenko, On the characterization of a Riemann surface by its semigroup of endomorphisms, Trans. Amer. Math. Soc., 338 (1993), 123-131.
doi: 10.2307/2154447. |
[6] |
A. Hinkkanen, Functions conjugating entire functions to entire functions and semigroups of analytic endomorphisms, Complex Variables and Elliptic Equations, 18 (1992), 149-154.
doi: 10.1080/17476939208814541. |
[7] |
M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics, J. Diff. Geom., 47 (1997), 17-94. |
[8] |
R. Mañè, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Scien. Ec. Norm. Sup. Paris(4), 16 (1983), 193-217. |
[9] |
K. D. Magill, Jr., A survey of semigroups of continous self maps,, Semigroup Forum, 11 (): 189.
doi: 10.1007/BF02195270. |
[10] |
C. McMullen, "Complex Dynamics and Renormalization," Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. |
[11] |
______, "Renormalization and 3-Manifolds Which Fiber Over the Circle," Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. |
[12] |
J. Milnor, "Dynamics of One Complex Variable," Friedr. Vieweg & Sohn, 1999. |
[13] |
J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc., 23 (1922), 51-66.
doi: 10.1090/S0002-9947-1922-1501205-4. |
[14] |
J. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math., (1937), 261-264. |
show all references
References:
[1] |
A. F. Beardon and T. W. Ng, On Ritt's factorization of polynomials, J. London Math. Soc. (2), 62 (2000), 127-138.
doi: 10.1093/rpc/2000rpc587. |
[2] |
C. Cabrera and P. Makienko, On dynamical Teichmüller spaces, Conf. Geom and Dyn., 14 (2010), 256-268.
doi: 10.1090/S1088-4173-2010-00214-6. |
[3] |
A. Douady, Systèmes dynamiques holomorphes, Bourbaki seminar, 1982/83, Astèrisque, 105, Soc. Math. France, Paris, (1983), 39-63. |
[4] |
A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263-297.
doi: 10.1007/BF02392534. |
[5] |
A. Eremenko, On the characterization of a Riemann surface by its semigroup of endomorphisms, Trans. Amer. Math. Soc., 338 (1993), 123-131.
doi: 10.2307/2154447. |
[6] |
A. Hinkkanen, Functions conjugating entire functions to entire functions and semigroups of analytic endomorphisms, Complex Variables and Elliptic Equations, 18 (1992), 149-154.
doi: 10.1080/17476939208814541. |
[7] |
M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics, J. Diff. Geom., 47 (1997), 17-94. |
[8] |
R. Mañè, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Scien. Ec. Norm. Sup. Paris(4), 16 (1983), 193-217. |
[9] |
K. D. Magill, Jr., A survey of semigroups of continous self maps,, Semigroup Forum, 11 (): 189.
doi: 10.1007/BF02195270. |
[10] |
C. McMullen, "Complex Dynamics and Renormalization," Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. |
[11] |
______, "Renormalization and 3-Manifolds Which Fiber Over the Circle," Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. |
[12] |
J. Milnor, "Dynamics of One Complex Variable," Friedr. Vieweg & Sohn, 1999. |
[13] |
J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc., 23 (1922), 51-66.
doi: 10.1090/S0002-9947-1922-1501205-4. |
[14] |
J. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math., (1937), 261-264. |
[1] |
John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047 |
[2] |
Marco Abate, Francesca Tovena. Formal normal forms for holomorphic maps tangent to the identity. Conference Publications, 2005, 2005 (Special) : 1-10. doi: 10.3934/proc.2005.2005.1 |
[3] |
Eugen Mihailescu, Mariusz Urbański. Holomorphic maps for which the unstable manifolds depend on prehistories. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 443-450. doi: 10.3934/dcds.2003.9.443 |
[4] |
Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847 |
[5] |
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 |
[6] |
Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140 |
[7] |
Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537 |
[8] |
Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363 |
[9] |
David DeLatte. Diophantine conditions for the linearization of commuting holomorphic functions. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 317-332. doi: 10.3934/dcds.1997.3.317 |
[10] |
Marco Abate, Jasmin Raissy. Formal Poincaré-Dulac renormalization for holomorphic germs. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1773-1807. doi: 10.3934/dcds.2013.33.1773 |
[11] |
Jeffrey Diller, Han Liu, Roland K. W. Roeder. Typical dynamics of plane rational maps with equal degrees. Journal of Modern Dynamics, 2016, 10: 353-377. doi: 10.3934/jmd.2016.10.353 |
[12] |
Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293 |
[13] |
Lisa C. Jeffrey and Frances C. Kirwan. Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface. Electronic Research Announcements, 1995, 1: 57-71. |
[14] |
Andrzej Biś. Entropies of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 639-648. doi: 10.3934/dcds.2004.11.639 |
[15] |
Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139 |
[16] |
Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321 |
[17] |
Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016 |
[18] |
Richard Sharp, Anastasios Stylianou. Statistics of multipliers for hyperbolic rational maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1225-1241. doi: 10.3934/dcds.2021153 |
[19] |
Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583 |
[20] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]