Advanced Search
Article Contents
Article Contents

Entropy of endomorphisms of Lie groups

Abstract Related Papers Cited by
  • We show, when $G$ is a nilpotent or reductive Lie group, that the entropy of any surjective endomorphism coincides with the entropy of its restriction to the toral component of the center of $G$. In particular, if $G$ is a semi-simple Lie group, the entropy of any surjective endomorphism always vanishes. Since every compact group is reductive, the formula for the entropy of a endomorphism of a compact group reduces to the formula for the entropy of an endomorphism of a torus. We also characterize the recurrent set of conjugations of linear semi-simple Lie groups.
    Mathematics Subject Classification: Primary: 37B40, 22D40; Secondary: 37A35, 22E99.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Blanchard, E. Glasner, S. Kolyada and A. Maas, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.


    R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Americ. Math Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X.


    T. Ferraiol, "Entropia e Ações de Grupos de Lie," Master thesis, University of Campinas, 2008.


    T. Ferraiol, M. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds, Discrete Contin. Dyn. Syst. A, 26 (2010), 923-947.doi: 10.3934/dcds.2010.26.923.


    E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applications, Isr. J. Math., 102 (1997), 13-27.doi: 10.1007/BF02773793.


    M. Handel and B. Kitchens, Metrics and entropy for non-compact spaces, Isr. J. Math., 91 (1995), 253-271.doi: 10.1007/BF02761650.


    S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces," Academic Press, New York, 1978.


    A. W. Knapp, "Lie Groups Beyond an Introduction," Progress in Mathematics, 140, Birkhäuser, Boston, 2002.


    M. Patrão, Entropy and its Variational Principle for Non-Compact Metric Spaces, Ergodic Theory and Dynamical Systems, 30 (2010), 1529-1542.doi: 10.1017/S0143385709000674.


    M. Patrão, L. Santos and L. Seco, A Note on the Jordan Decomposition, Proyecciones Journal of Mathematics, 30 (2011), 123-136.doi: 10.4067/S0716-09172011000100011.


    Ya. G. Sinai, On the Notion of Entropy of a Dynamical System, Doklady of Russian Academy of Sciences, 124 (1959), 768-771.

  • 加载中

Article Metrics

HTML views() PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint