\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Entropy of endomorphisms of Lie groups

Abstract Related Papers Cited by
  • We show, when $G$ is a nilpotent or reductive Lie group, that the entropy of any surjective endomorphism coincides with the entropy of its restriction to the toral component of the center of $G$. In particular, if $G$ is a semi-simple Lie group, the entropy of any surjective endomorphism always vanishes. Since every compact group is reductive, the formula for the entropy of a endomorphism of a compact group reduces to the formula for the entropy of an endomorphism of a torus. We also characterize the recurrent set of conjugations of linear semi-simple Lie groups.
    Mathematics Subject Classification: Primary: 37B40, 22D40; Secondary: 37A35, 22E99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Blanchard, E. Glasner, S. Kolyada and A. Maas, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.

    [2]

    R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Americ. Math Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X.

    [3]

    T. Ferraiol, "Entropia e Ações de Grupos de Lie," Master thesis, University of Campinas, 2008.

    [4]

    T. Ferraiol, M. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds, Discrete Contin. Dyn. Syst. A, 26 (2010), 923-947.doi: 10.3934/dcds.2010.26.923.

    [5]

    E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applications, Isr. J. Math., 102 (1997), 13-27.doi: 10.1007/BF02773793.

    [6]

    M. Handel and B. Kitchens, Metrics and entropy for non-compact spaces, Isr. J. Math., 91 (1995), 253-271.doi: 10.1007/BF02761650.

    [7]

    S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces," Academic Press, New York, 1978.

    [8]

    A. W. Knapp, "Lie Groups Beyond an Introduction," Progress in Mathematics, 140, Birkhäuser, Boston, 2002.

    [9]

    M. Patrão, Entropy and its Variational Principle for Non-Compact Metric Spaces, Ergodic Theory and Dynamical Systems, 30 (2010), 1529-1542.doi: 10.1017/S0143385709000674.

    [10]

    M. Patrão, L. Santos and L. Seco, A Note on the Jordan Decomposition, Proyecciones Journal of Mathematics, 30 (2011), 123-136.doi: 10.4067/S0716-09172011000100011.

    [11]

    Ya. G. Sinai, On the Notion of Entropy of a Dynamical System, Doklady of Russian Academy of Sciences, 124 (1959), 768-771.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return