April  2013, 33(4): 1389-1405. doi: 10.3934/dcds.2013.33.1389

Global well-posedness of critical nonlinear Schrödinger equations below $L^2$

1. 

Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756

2. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea

3. 

Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

Received  May 2011 Revised  August 2012 Published  October 2012

The global well-posedness on the Cauchy problem of nonlinear Schrödinger equations (NLS) is studied for a class of critical nonlinearity below $L^2$ in small data setting. We consider Hartree type (HNLS) and inhomogeneous power type NLS (PNLS). Since the critical Sobolev index $s_c$ is negative, it is rather difficult to analyze the nonlinear term. To overcome the difficulty we combine weighted Strichartz estimates in polar coordinates with new Duhamel estimates involving angular regularity.
Citation: Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389
References:
[1]

C. Ahn and Y. Cho, Lorentz space extension of Strichartz estimate,, Proc. Amer. Math. Soc., 133 (2005), 3497.   Google Scholar

[2]

L. Bergé, Soliton stability versus collapse,, Phys. Rev. E., 62 (2000), 3071.   Google Scholar

[3]

A. Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities,, Annales de l'IHP., 6 (2005), 1.   Google Scholar

[4]

N. L. Carothers, "A Short Course on Banach Space Theory,", London Mathematical Society Student Texts No. 64, (2005).   Google Scholar

[5]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics 10, (2003).   Google Scholar

[6]

M. Chae, Y. Cho and S. Lee, Mixed norm estimates of Schrodinger waves and their applications,, Commun. Partial Differential Equations, 35 (2010), 906.   Google Scholar

[7]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., ().   Google Scholar

[8]

Y. Cho, S. Lee and T. Ozawa, On Hartree equations with derivatives,, Nonlinear Analysis TMA, 74 (2011), 2098.   Google Scholar

[9]

Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations,, RIMS Kokyuroku Bessatsu, B22 (2010), 145.   Google Scholar

[10]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, Commun. Contem. Math., 11 (2009), 355.   Google Scholar

[11]

Y. Cho, T. Ozawa, H. Sasaki and Y. Shim, Remarks on the semirelativistic Hartree equations,, DCDS-A, 23 (2009), 1273.   Google Scholar

[12]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Func. Anal., 179 (2001), 409.   Google Scholar

[13]

J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation in 2d,, Int. Math. Res. Not. 23 (2007), (2007).   Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$,, Comm. Pure Appl. Math., 57 (2004), 987.   Google Scholar

[15]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications,, Forum Math., 23 (2011), 181.   Google Scholar

[16]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$,, Comm. Math. Phys., 151 (1993), 619.  doi: 10.1080/15332969.1993.9985061.  Google Scholar

[17]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, in preprint, ().   Google Scholar

[19]

N. Hayashi and T. Ozawa, Smoothing effect for Schrödinger equations,, J. Fuctional. Anal., 85 (1989), 307.   Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2} - Ze^2/r$,, Commun. Math. Physics, 53 (1977), 285.   Google Scholar

[21]

K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity,, Funkcial. Ekvac., 51 (2008), 135.   Google Scholar

[22]

J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions,, Comm. Pure Appl. Math., 60 (2007), 164.  doi: 10.1002/cpa.20133.  Google Scholar

[23]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[24]

S. Machihara, M. Nakamura, K. Nakanashi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Func. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[25]

F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u - k(x)|u|^{4/N}u \text{ in } \mathbbR^n$,, Ann. Inst. H. Poincaré Phys. Théor, 64 (1996), 33.   Google Scholar

[26]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Func. Anal., 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[27]

_______, The Cauchy problem of the hartree equation,, J. Partial Diff. Eqs., 21 (2008), 22.   Google Scholar

[28]

_______, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, J. Math. Pure Appl., 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[29]

_______, Global well-posedness and scattering for the defocusing $H^{1/2}$-subcritical Hartree equation in $R^d$,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1831.   Google Scholar

[30]

_______, Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in $\mathbbR^{1+n}$,, Commun. Partial Differential Equations, 36 (2011), 729.   Google Scholar

[31]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. II,, Ann. Henri Poincaré, 3 (2002), 503.   Google Scholar

[32]

M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case,, Math. Ann., 335 (2006), 645.  doi: 10.1007/s00208-006-0757-4.  Google Scholar

[33]

T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation,, Commun. Partial Differential Equations, 25 (2000), 1471.   Google Scholar

[34]

_______, "Nonlinear Dispersive Equations,", Local and global analysis, (2006).   Google Scholar

[35]

I. Towers and B. A. Malomed, Stable, $(2 + 1)$dimensional solutions in a layered medium with sign-alternating Kerr nonlinearity,, J. Opt. Soc. Am. B, 19 (2002), 537.   Google Scholar

[36]

Y. Tsutsumi, $L^2$-solutions for noninear Schrödinger equations and noninear groups,, Funkcial. Ekvac., 30 (1987), 115.   Google Scholar

[37]

K. Yosida, "Functional Analysis,", Springer, (1965).   Google Scholar

show all references

References:
[1]

C. Ahn and Y. Cho, Lorentz space extension of Strichartz estimate,, Proc. Amer. Math. Soc., 133 (2005), 3497.   Google Scholar

[2]

L. Bergé, Soliton stability versus collapse,, Phys. Rev. E., 62 (2000), 3071.   Google Scholar

[3]

A. Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities,, Annales de l'IHP., 6 (2005), 1.   Google Scholar

[4]

N. L. Carothers, "A Short Course on Banach Space Theory,", London Mathematical Society Student Texts No. 64, (2005).   Google Scholar

[5]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics 10, (2003).   Google Scholar

[6]

M. Chae, Y. Cho and S. Lee, Mixed norm estimates of Schrodinger waves and their applications,, Commun. Partial Differential Equations, 35 (2010), 906.   Google Scholar

[7]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., ().   Google Scholar

[8]

Y. Cho, S. Lee and T. Ozawa, On Hartree equations with derivatives,, Nonlinear Analysis TMA, 74 (2011), 2098.   Google Scholar

[9]

Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations,, RIMS Kokyuroku Bessatsu, B22 (2010), 145.   Google Scholar

[10]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, Commun. Contem. Math., 11 (2009), 355.   Google Scholar

[11]

Y. Cho, T. Ozawa, H. Sasaki and Y. Shim, Remarks on the semirelativistic Hartree equations,, DCDS-A, 23 (2009), 1273.   Google Scholar

[12]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Func. Anal., 179 (2001), 409.   Google Scholar

[13]

J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation in 2d,, Int. Math. Res. Not. 23 (2007), (2007).   Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$,, Comm. Pure Appl. Math., 57 (2004), 987.   Google Scholar

[15]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications,, Forum Math., 23 (2011), 181.   Google Scholar

[16]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$,, Comm. Math. Phys., 151 (1993), 619.  doi: 10.1080/15332969.1993.9985061.  Google Scholar

[17]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, in preprint, ().   Google Scholar

[19]

N. Hayashi and T. Ozawa, Smoothing effect for Schrödinger equations,, J. Fuctional. Anal., 85 (1989), 307.   Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2} - Ze^2/r$,, Commun. Math. Physics, 53 (1977), 285.   Google Scholar

[21]

K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity,, Funkcial. Ekvac., 51 (2008), 135.   Google Scholar

[22]

J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions,, Comm. Pure Appl. Math., 60 (2007), 164.  doi: 10.1002/cpa.20133.  Google Scholar

[23]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[24]

S. Machihara, M. Nakamura, K. Nakanashi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Func. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[25]

F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u - k(x)|u|^{4/N}u \text{ in } \mathbbR^n$,, Ann. Inst. H. Poincaré Phys. Théor, 64 (1996), 33.   Google Scholar

[26]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Func. Anal., 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[27]

_______, The Cauchy problem of the hartree equation,, J. Partial Diff. Eqs., 21 (2008), 22.   Google Scholar

[28]

_______, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, J. Math. Pure Appl., 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[29]

_______, Global well-posedness and scattering for the defocusing $H^{1/2}$-subcritical Hartree equation in $R^d$,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1831.   Google Scholar

[30]

_______, Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in $\mathbbR^{1+n}$,, Commun. Partial Differential Equations, 36 (2011), 729.   Google Scholar

[31]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. II,, Ann. Henri Poincaré, 3 (2002), 503.   Google Scholar

[32]

M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case,, Math. Ann., 335 (2006), 645.  doi: 10.1007/s00208-006-0757-4.  Google Scholar

[33]

T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation,, Commun. Partial Differential Equations, 25 (2000), 1471.   Google Scholar

[34]

_______, "Nonlinear Dispersive Equations,", Local and global analysis, (2006).   Google Scholar

[35]

I. Towers and B. A. Malomed, Stable, $(2 + 1)$dimensional solutions in a layered medium with sign-alternating Kerr nonlinearity,, J. Opt. Soc. Am. B, 19 (2002), 537.   Google Scholar

[36]

Y. Tsutsumi, $L^2$-solutions for noninear Schrödinger equations and noninear groups,, Funkcial. Ekvac., 30 (1987), 115.   Google Scholar

[37]

K. Yosida, "Functional Analysis,", Springer, (1965).   Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[5]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[16]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[19]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]