April  2013, 33(4): 1389-1405. doi: 10.3934/dcds.2013.33.1389

Global well-posedness of critical nonlinear Schrödinger equations below $L^2$

1. 

Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756

2. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea

3. 

Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

Received  May 2011 Revised  August 2012 Published  October 2012

The global well-posedness on the Cauchy problem of nonlinear Schrödinger equations (NLS) is studied for a class of critical nonlinearity below $L^2$ in small data setting. We consider Hartree type (HNLS) and inhomogeneous power type NLS (PNLS). Since the critical Sobolev index $s_c$ is negative, it is rather difficult to analyze the nonlinear term. To overcome the difficulty we combine weighted Strichartz estimates in polar coordinates with new Duhamel estimates involving angular regularity.
Citation: Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389
References:
[1]

C. Ahn and Y. Cho, Lorentz space extension of Strichartz estimate,, Proc. Amer. Math. Soc., 133 (2005), 3497.   Google Scholar

[2]

L. Bergé, Soliton stability versus collapse,, Phys. Rev. E., 62 (2000), 3071.   Google Scholar

[3]

A. Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities,, Annales de l'IHP., 6 (2005), 1.   Google Scholar

[4]

N. L. Carothers, "A Short Course on Banach Space Theory,", London Mathematical Society Student Texts No. 64, (2005).   Google Scholar

[5]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics 10, (2003).   Google Scholar

[6]

M. Chae, Y. Cho and S. Lee, Mixed norm estimates of Schrodinger waves and their applications,, Commun. Partial Differential Equations, 35 (2010), 906.   Google Scholar

[7]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., ().   Google Scholar

[8]

Y. Cho, S. Lee and T. Ozawa, On Hartree equations with derivatives,, Nonlinear Analysis TMA, 74 (2011), 2098.   Google Scholar

[9]

Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations,, RIMS Kokyuroku Bessatsu, B22 (2010), 145.   Google Scholar

[10]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, Commun. Contem. Math., 11 (2009), 355.   Google Scholar

[11]

Y. Cho, T. Ozawa, H. Sasaki and Y. Shim, Remarks on the semirelativistic Hartree equations,, DCDS-A, 23 (2009), 1273.   Google Scholar

[12]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Func. Anal., 179 (2001), 409.   Google Scholar

[13]

J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation in 2d,, Int. Math. Res. Not. 23 (2007), (2007).   Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$,, Comm. Pure Appl. Math., 57 (2004), 987.   Google Scholar

[15]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications,, Forum Math., 23 (2011), 181.   Google Scholar

[16]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$,, Comm. Math. Phys., 151 (1993), 619.  doi: 10.1080/15332969.1993.9985061.  Google Scholar

[17]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, in preprint, ().   Google Scholar

[19]

N. Hayashi and T. Ozawa, Smoothing effect for Schrödinger equations,, J. Fuctional. Anal., 85 (1989), 307.   Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2} - Ze^2/r$,, Commun. Math. Physics, 53 (1977), 285.   Google Scholar

[21]

K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity,, Funkcial. Ekvac., 51 (2008), 135.   Google Scholar

[22]

J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions,, Comm. Pure Appl. Math., 60 (2007), 164.  doi: 10.1002/cpa.20133.  Google Scholar

[23]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[24]

S. Machihara, M. Nakamura, K. Nakanashi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Func. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[25]

F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u - k(x)|u|^{4/N}u \text{ in } \mathbbR^n$,, Ann. Inst. H. Poincaré Phys. Théor, 64 (1996), 33.   Google Scholar

[26]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Func. Anal., 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[27]

_______, The Cauchy problem of the hartree equation,, J. Partial Diff. Eqs., 21 (2008), 22.   Google Scholar

[28]

_______, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, J. Math. Pure Appl., 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[29]

_______, Global well-posedness and scattering for the defocusing $H^{1/2}$-subcritical Hartree equation in $R^d$,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1831.   Google Scholar

[30]

_______, Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in $\mathbbR^{1+n}$,, Commun. Partial Differential Equations, 36 (2011), 729.   Google Scholar

[31]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. II,, Ann. Henri Poincaré, 3 (2002), 503.   Google Scholar

[32]

M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case,, Math. Ann., 335 (2006), 645.  doi: 10.1007/s00208-006-0757-4.  Google Scholar

[33]

T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation,, Commun. Partial Differential Equations, 25 (2000), 1471.   Google Scholar

[34]

_______, "Nonlinear Dispersive Equations,", Local and global analysis, (2006).   Google Scholar

[35]

I. Towers and B. A. Malomed, Stable, $(2 + 1)$dimensional solutions in a layered medium with sign-alternating Kerr nonlinearity,, J. Opt. Soc. Am. B, 19 (2002), 537.   Google Scholar

[36]

Y. Tsutsumi, $L^2$-solutions for noninear Schrödinger equations and noninear groups,, Funkcial. Ekvac., 30 (1987), 115.   Google Scholar

[37]

K. Yosida, "Functional Analysis,", Springer, (1965).   Google Scholar

show all references

References:
[1]

C. Ahn and Y. Cho, Lorentz space extension of Strichartz estimate,, Proc. Amer. Math. Soc., 133 (2005), 3497.   Google Scholar

[2]

L. Bergé, Soliton stability versus collapse,, Phys. Rev. E., 62 (2000), 3071.   Google Scholar

[3]

A. Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities,, Annales de l'IHP., 6 (2005), 1.   Google Scholar

[4]

N. L. Carothers, "A Short Course on Banach Space Theory,", London Mathematical Society Student Texts No. 64, (2005).   Google Scholar

[5]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics 10, (2003).   Google Scholar

[6]

M. Chae, Y. Cho and S. Lee, Mixed norm estimates of Schrodinger waves and their applications,, Commun. Partial Differential Equations, 35 (2010), 906.   Google Scholar

[7]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., ().   Google Scholar

[8]

Y. Cho, S. Lee and T. Ozawa, On Hartree equations with derivatives,, Nonlinear Analysis TMA, 74 (2011), 2098.   Google Scholar

[9]

Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations,, RIMS Kokyuroku Bessatsu, B22 (2010), 145.   Google Scholar

[10]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, Commun. Contem. Math., 11 (2009), 355.   Google Scholar

[11]

Y. Cho, T. Ozawa, H. Sasaki and Y. Shim, Remarks on the semirelativistic Hartree equations,, DCDS-A, 23 (2009), 1273.   Google Scholar

[12]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Func. Anal., 179 (2001), 409.   Google Scholar

[13]

J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation in 2d,, Int. Math. Res. Not. 23 (2007), (2007).   Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$,, Comm. Pure Appl. Math., 57 (2004), 987.   Google Scholar

[15]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications,, Forum Math., 23 (2011), 181.   Google Scholar

[16]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$,, Comm. Math. Phys., 151 (1993), 619.  doi: 10.1080/15332969.1993.9985061.  Google Scholar

[17]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, in preprint, ().   Google Scholar

[19]

N. Hayashi and T. Ozawa, Smoothing effect for Schrödinger equations,, J. Fuctional. Anal., 85 (1989), 307.   Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2} - Ze^2/r$,, Commun. Math. Physics, 53 (1977), 285.   Google Scholar

[21]

K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity,, Funkcial. Ekvac., 51 (2008), 135.   Google Scholar

[22]

J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions,, Comm. Pure Appl. Math., 60 (2007), 164.  doi: 10.1002/cpa.20133.  Google Scholar

[23]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[24]

S. Machihara, M. Nakamura, K. Nakanashi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Func. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[25]

F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u - k(x)|u|^{4/N}u \text{ in } \mathbbR^n$,, Ann. Inst. H. Poincaré Phys. Théor, 64 (1996), 33.   Google Scholar

[26]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Func. Anal., 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[27]

_______, The Cauchy problem of the hartree equation,, J. Partial Diff. Eqs., 21 (2008), 22.   Google Scholar

[28]

_______, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, J. Math. Pure Appl., 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[29]

_______, Global well-posedness and scattering for the defocusing $H^{1/2}$-subcritical Hartree equation in $R^d$,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1831.   Google Scholar

[30]

_______, Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in $\mathbbR^{1+n}$,, Commun. Partial Differential Equations, 36 (2011), 729.   Google Scholar

[31]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. II,, Ann. Henri Poincaré, 3 (2002), 503.   Google Scholar

[32]

M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case,, Math. Ann., 335 (2006), 645.  doi: 10.1007/s00208-006-0757-4.  Google Scholar

[33]

T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation,, Commun. Partial Differential Equations, 25 (2000), 1471.   Google Scholar

[34]

_______, "Nonlinear Dispersive Equations,", Local and global analysis, (2006).   Google Scholar

[35]

I. Towers and B. A. Malomed, Stable, $(2 + 1)$dimensional solutions in a layered medium with sign-alternating Kerr nonlinearity,, J. Opt. Soc. Am. B, 19 (2002), 537.   Google Scholar

[36]

Y. Tsutsumi, $L^2$-solutions for noninear Schrödinger equations and noninear groups,, Funkcial. Ekvac., 30 (1987), 115.   Google Scholar

[37]

K. Yosida, "Functional Analysis,", Springer, (1965).   Google Scholar

[1]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[2]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[3]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[4]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[5]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[6]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[7]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[8]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[9]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[10]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[11]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[12]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[13]

Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113

[14]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[15]

Yanfang Gao, Zhiyong Wang. Minimal mass non-scattering solutions of the focusing L2-critical Hartree equations with radial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1979-2007. doi: 10.3934/dcds.2017084

[16]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[17]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[18]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[19]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[20]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]