January  2013, 33(1): 141-152. doi: 10.3934/dcds.2013.33.141

On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian

1. 

Departamento de Matemáticas, Universidade de Vigo, Higher Technical School of Computer Engineering, 32004, Ourense, Spain

2. 

Departamento de Matemática Aplicada, Universidad de Granada, Facultad de Ciencias, Granada, Spain

Received  April 2011 Revised  January 2012 Published  September 2012

In this paper we study the existence, multiplicity and stability of T-periodic solutions for the equation $\left(\phi(x')\right)'+c\, x'+g(x)=e(t)+s.$
Citation: J. Ángel Cid, Pedro J. Torres. On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 141-152. doi: 10.3934/dcds.2013.33.141
References:
[1]

H. Amann, "Ordinary Differential Equations. An Introduction to Nonlinear Analysis,", Walter de Gruyter, (1990). Google Scholar

[2]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\Phi$-Laplacians,, Journal of Dynamics and Differential Equations, 22 (2010), 463. doi: 10.1007/s10884-010-9172-3. Google Scholar

[3]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian,, J. Differential Equations, 243 (2007), 536. doi: 10.1016/j.jde.2007.05.014. Google Scholar

[4]

C. Bereanu and J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and $\phi$-Laplacian,, NoDEA, 15 (2008), 159. doi: 10.1007/s00030-007-7004-x. Google Scholar

[5]

C. Bereanu and J. Mawhin, Boundary value problems for some nonlinear systems with singular $\phi$-Laplacian,, J. Fixed Point Theory Appl., 4 (2008), 57. Google Scholar

[6]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum,, Proc. Am. Math. Soc. 140 (2012), 140 (2012), 2713. Google Scholar

[7]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations, 23 (2010), 801. Google Scholar

[8]

J. Čepička, P. Drábek and J. Jenšíková, On the stability of periodic solutions of the damped pendulum equation,, J. Math. Anal. Appl., 209 (1997), 712. doi: 10.1006/jmaa.1997.5380. Google Scholar

[9]

H. Chen and Y. Li, Rate of decay of stable periodic solutions of Duffing equations,, J. Differential Equations, 236 (2007), 493. doi: 10.1016/j.jde.2007.01.023. Google Scholar

[10]

J. Chu, J. Lei and M. Zhang, The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator,, J. Differential Equations, 247 (2009), 530. Google Scholar

[11]

J. A. Cid and P. J. Torres, Solvability for some boundary value problems with $\phi$-Laplacian operators,, Discrete Contin. Dyn. Syst., 23 (2009), 727. doi: 10.3934/dcds.2009.23.727. Google Scholar

[12]

G. Hamel, Ueber erzwungene Schingungen bei endlischen Amplituden,, Math. Ann., 86 (1922), 1. doi: 10.1007/BF01458566. Google Scholar

[13]

J. Mawhin, Global results for the forced pendulum equation,, in, 1 (2004), 533. Google Scholar

[14]

J. Mawhin, Periodic solutions of the forced pendulum: classical vs relativistic,, Le Matematiche, LXV (2010), 97. Google Scholar

[15]

J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations,, J. Differential Equations, 52 (1984), 264. doi: 10.1016/0022-0396(84)90180-3. Google Scholar

[16]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Inequalities Involving Functions and Their Integrals and Derivatives,", Kluwer Academic Publishers, (1991). Google Scholar

[17]

R. Ortega, Stability and index of periodic solutions of an equation of Duffing type,, Boll. Un. Mat. Italiana, 3-B (1989), 533. Google Scholar

[18]

R. Ortega, Some applications of the topological degree to stability theory,, in, 472 (1995), 377. Google Scholar

[19]

R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type,, Diff. Int. Equ., 3 (1990), 275. Google Scholar

[20]

P. J. Torres, Periodic oscillations of the relativistic pendulum with friction,, Physics Letters A, 372 (2008), 6386. doi: 10.1016/j.physleta.2008.08.060. Google Scholar

[21]

P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian,, Communications in Contemporary Mathematics, 13 (2011), 283. doi: 10.1142/S0219199711004208. Google Scholar

show all references

References:
[1]

H. Amann, "Ordinary Differential Equations. An Introduction to Nonlinear Analysis,", Walter de Gruyter, (1990). Google Scholar

[2]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\Phi$-Laplacians,, Journal of Dynamics and Differential Equations, 22 (2010), 463. doi: 10.1007/s10884-010-9172-3. Google Scholar

[3]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian,, J. Differential Equations, 243 (2007), 536. doi: 10.1016/j.jde.2007.05.014. Google Scholar

[4]

C. Bereanu and J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and $\phi$-Laplacian,, NoDEA, 15 (2008), 159. doi: 10.1007/s00030-007-7004-x. Google Scholar

[5]

C. Bereanu and J. Mawhin, Boundary value problems for some nonlinear systems with singular $\phi$-Laplacian,, J. Fixed Point Theory Appl., 4 (2008), 57. Google Scholar

[6]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum,, Proc. Am. Math. Soc. 140 (2012), 140 (2012), 2713. Google Scholar

[7]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations, 23 (2010), 801. Google Scholar

[8]

J. Čepička, P. Drábek and J. Jenšíková, On the stability of periodic solutions of the damped pendulum equation,, J. Math. Anal. Appl., 209 (1997), 712. doi: 10.1006/jmaa.1997.5380. Google Scholar

[9]

H. Chen and Y. Li, Rate of decay of stable periodic solutions of Duffing equations,, J. Differential Equations, 236 (2007), 493. doi: 10.1016/j.jde.2007.01.023. Google Scholar

[10]

J. Chu, J. Lei and M. Zhang, The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator,, J. Differential Equations, 247 (2009), 530. Google Scholar

[11]

J. A. Cid and P. J. Torres, Solvability for some boundary value problems with $\phi$-Laplacian operators,, Discrete Contin. Dyn. Syst., 23 (2009), 727. doi: 10.3934/dcds.2009.23.727. Google Scholar

[12]

G. Hamel, Ueber erzwungene Schingungen bei endlischen Amplituden,, Math. Ann., 86 (1922), 1. doi: 10.1007/BF01458566. Google Scholar

[13]

J. Mawhin, Global results for the forced pendulum equation,, in, 1 (2004), 533. Google Scholar

[14]

J. Mawhin, Periodic solutions of the forced pendulum: classical vs relativistic,, Le Matematiche, LXV (2010), 97. Google Scholar

[15]

J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations,, J. Differential Equations, 52 (1984), 264. doi: 10.1016/0022-0396(84)90180-3. Google Scholar

[16]

D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Inequalities Involving Functions and Their Integrals and Derivatives,", Kluwer Academic Publishers, (1991). Google Scholar

[17]

R. Ortega, Stability and index of periodic solutions of an equation of Duffing type,, Boll. Un. Mat. Italiana, 3-B (1989), 533. Google Scholar

[18]

R. Ortega, Some applications of the topological degree to stability theory,, in, 472 (1995), 377. Google Scholar

[19]

R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type,, Diff. Int. Equ., 3 (1990), 275. Google Scholar

[20]

P. J. Torres, Periodic oscillations of the relativistic pendulum with friction,, Physics Letters A, 372 (2008), 6386. doi: 10.1016/j.physleta.2008.08.060. Google Scholar

[21]

P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian,, Communications in Contemporary Mathematics, 13 (2011), 283. doi: 10.1142/S0219199711004208. Google Scholar

[1]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[2]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[3]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[4]

Feng Wang, Jifeng Chu, Zaitao Liang. Prevalence of stable periodic solutions in the forced relativistic pendulum equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4579-4594. doi: 10.3934/dcdsb.2018177

[5]

Cristian Bereanu, Petru Jebelean, Jean Mawhin. Radial solutions for Neumann problems with $\phi$-Laplacians and pendulum-like nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 637-648. doi: 10.3934/dcds.2010.28.637

[6]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[7]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[8]

Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025

[9]

R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211

[10]

J. Ángel Cid, Pedro J. Torres. Solvability for some boundary value problems with $\phi$-Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 727-732. doi: 10.3934/dcds.2009.23.727

[11]

Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015

[12]

Roman Srzednicki. On periodic solutions in the Whitney's inverted pendulum problem. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2127-2141. doi: 10.3934/dcdss.2019137

[13]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[14]

Jean Mawhin. Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4015-4026. doi: 10.3934/dcds.2012.32.4015

[15]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[16]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[17]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic & Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[18]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[19]

Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082

[20]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]