\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian

Abstract Related Papers Cited by
  • In this paper we study the existence, multiplicity and stability of T-periodic solutions for the equation $\left(\phi(x')\right)'+c\, x'+g(x)=e(t)+s.$
    Mathematics Subject Classification: Primary: 34C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, "Ordinary Differential Equations. An Introduction to Nonlinear Analysis," Walter de Gruyter, 1990.

    [2]

    C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\Phi$-Laplacians, Journal of Dynamics and Differential Equations, 22 (2010), 463-471.doi: 10.1007/s10884-010-9172-3.

    [3]

    C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.doi: 10.1016/j.jde.2007.05.014.

    [4]

    C. Bereanu and J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and $\phi$-Laplacian, NoDEA, 15 (2008), 159-168.doi: 10.1007/s00030-007-7004-x.

    [5]

    C. Bereanu and J. Mawhin, Boundary value problems for some nonlinear systems with singular $\phi$-Laplacian, J. Fixed Point Theory Appl., 4 (2008), 57-75.

    [6]

    C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Am. Math. Soc. 140 (2012), 2713-2719.

    [7]

    H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differential Integral Equations, 23, (2010), 801-810.

    [8]

    J. Čepička, P. Drábek and J. Jenšíková, On the stability of periodic solutions of the damped pendulum equation, J. Math. Anal. Appl., 209 (1997), 712-723.doi: 10.1006/jmaa.1997.5380.

    [9]

    H. Chen and Y. Li, Rate of decay of stable periodic solutions of Duffing equations, J. Differential Equations, 236 (2007), 493-503.doi: 10.1016/j.jde.2007.01.023.

    [10]

    J. Chu, J. Lei and M. Zhang, The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator, J. Differential Equations, 247 (2009), 530-542.

    [11]

    J. A. Cid and P. J. Torres, Solvability for some boundary value problems with $\phi$-Laplacian operators, Discrete Contin. Dyn. Syst., 23 (2009), 727-732.doi: 10.3934/dcds.2009.23.727.

    [12]

    G. Hamel, Ueber erzwungene Schingungen bei endlischen Amplituden, Math. Ann., 86 (1922), 1-13.doi: 10.1007/BF01458566.

    [13]

    J. Mawhin, Global results for the forced pendulum equation, in "Handbook of Differential Equations" (eds. A. Ca\ nada, P. Drabek and A. Fonda), Elsevier, 1 (2004), 533-589.

    [14]

    J. Mawhin, Periodic solutions of the forced pendulum: classical vs relativistic, Le Matematiche, LXV (2010), 97-107.

    [15]

    J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations, 52 (1984), 264-287.doi: 10.1016/0022-0396(84)90180-3.

    [16]

    D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Inequalities Involving Functions and Their Integrals and Derivatives," Kluwer Academic Publishers, 1991.

    [17]

    R. Ortega, Stability and index of periodic solutions of an equation of Duffing type, Boll. Un. Mat. Italiana, 3-B (1989), 533-546.

    [18]

    R. Ortega, Some applications of the topological degree to stability theory, in "Topological Methods in Differential Equations and Inclusions'' (eds. A. Granas and M. Frigon), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 472, KluwerAcademic, (1995), 377-409.

    [19]

    R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type, Diff. Int. Equ., 3 (1990), 275-284.

    [20]

    P. J. Torres, Periodic oscillations of the relativistic pendulum with friction, Physics Letters A, 372 (2008), 6386-6387.doi: 10.1016/j.physleta.2008.08.060.

    [21]

    P. J. Torres, Nondegeneracy of the periodically forced Liénard differential equation with $\phi$-Laplacian, Communications in Contemporary Mathematics, 13 (2011), 283-292.doi: 10.1142/S0219199711004208.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return