\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Glauber dynamics in continuum: A constructive approach to evolution of states

Abstract Related Papers Cited by
  • The evolutions of states is described corresponding to the Glauber dynamics of an infinite system of interacting particles in continuum. The description is conducted on both micro- and mesoscopic levels. The microscopic description is based on solving linear equations for correlation functions by means of an Ovsjannikov-type technique, which yields the evolution in a scale of Banach spaces. The mesoscopic description is performed by means of the Vlasov scaling, which yields a linear infinite chain of equations obtained from those for the correlation function. Its main peculiarity is that, for the initial correlation function of the inhomogeneous Poisson measure, the solution is the correlation function of such a measure with density which solves a nonlinear differential equation of convolution type.
    Mathematics Subject Classification: Primary: 82C22, 60K35; Secondary: 35Q83.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications,'' Springer Monographs in Mathematics. Springer-Verlag Ltd., London, 2006.

    [2]

    R. L. Dobrushin, Y. G. Sinai and Y. M. Sukhov, Dynamical systems of statistical mechanics, in "Itogi Nauki'', VINITI (1985), 235-284; engl. transl. in "Dynamical systems. II: Ergodic theory with applications to dynamical systems and statistical mechanics'' (ed. Ya. G. Sinai), Encyclopaedia Math. Sci., Springer, Berlin Heidelberg, 1989.

    [3]

    N. L. Garcia and T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat., 1 (2006), 281-303.

    [4]

    I. M. Gel'fand and G. E. Shilov, "Generalized Functions. Vol. 3: Theory of Differential Equations,'' Transl. from the Russian by E. Meinhard, Mayer Academic Press, New York-London, 1967.

    [5]

    D. Finkelshtein, Yu. Kondratiev and O. Kutovyi, Vlasov scaling for stochastic dynamics of continuous systems, J. Stat. Phys., 141 (2010), 158-178.doi: 10.1007/s10955-010-0038-1.

    [6]

    D. Finkelshtein, Yu. Kondratiev and O. Kutovyi, Individual based model with competition in spatial ecology, SIAM J. Math. Anal., 41 (2009), 297-317.doi: 10.1137/080719376.

    [7]

    D. Finkelshtein, Yu. Kondratiev and O. Kutovyi, Vlasov scaling for the Glauber dynamics in continuum, Infin. Dimens. Anal. Quantum Probab. Relat. Top, 14 (2011), 537-569.doi: 10.1142/S021902571100450X.

    [8]

    D. Finkelshtein, Yu. Kondratiev, O. Kutovyi and E. Zhizhina, An approximative approach for construction of the Glauber dynamics in continuum, Math. Nachr., 285 (2012), 223-235.doi: 10.1002/mana.200910248.

    [9]

    D. Finkelshtein, Yu. Kondratiev and E. Lytvynov, Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics, Random Oper. Stochastic Equations, 15 (2007), 105-126.doi: 10.1515/rose.2007.007.

    [10]

    D. Finkelshtein, Yu. Kondratiev and M. J. Oliveira, Markov evolution and hierarchical equations in the continuum. I: One-component systems, J. Evol. Equ., 9 (2009), 197-233.doi: 10.1007/s00028-009-0007-9.

    [11]

    Yu. Kondratiev and T. Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2002), 201-233.doi: 10.1142/S0219025702000833.

    [12]

    Yu. Kondratiev and O. Kutovyi, On the metrical properties of the configuration space, Math. Nachr., 279 (2006), 774-783.doi: 10.1002/mana.200310392.

    [13]

    Yu. Kondratiev, O. Kutovyi and R. Minlos, On non-equilibrium stochastic dynamics for interacting particle systems in continuum, J. Funct. Anal., 255 (2008), 200-227.doi: 10.1016/j.jfa.2007.12.006.

    [14]

    Yu. Kondratiev, O. Kutovyi and R. Minlos, Ergodicity of non-equilibrium Glauber dynamics in continuum, J. Funct. Anal., 258 (2010), 3097-3116.doi: 10.1016/j.jfa.2009.09.005.

    [15]

    Yu. Kondratiev, O. Kutovyi and E. Zhizhina, Nonequilibrium Glauber-type dynamics in continuum, J. Math. Phys., 47 (2006), 17 pp. 113501.doi: 10.1063/1.2354589.

    [16]

    D. Ruelle, "Statistical Mechanics: Rigorous Results,'' World Scientific, Singapore, 1999.

    [17]

    H. R. Thieme and J. Voigt, Stochastic semigroups: Their construction by perturbation and approximation, in "Positivity IV--Theory and Applications," 135-146, Tech. Univ. Dresden, Dresden, 2006.

    [18]

    F. Trèves, "Ovcyannikov Theorem and Hyperdifferential Operators,'' Notas de Matemática, No. 46 Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return