April  2013, 33(4): 1499-1511. doi: 10.3934/dcds.2013.33.1499

Partial regularity of minimum energy configurations in ferroelectric liquid crystals

1. 

Department of Mathematics, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 120-749, South Korea

2. 

Department of Mathematics, Chungnam National University, 99 Daehak-ro, Gung-Dong Yuseong-gu, Daejeon 305-764, South Korea

Received  July 2011 Revised  September 2012 Published  October 2012

Considered here is a system of smectic liquid crystals possessing polarizations described by the Oseen-Frank and Chen-Lubensky energies. We establish partial regularity of minimizers for the governing energy functional using the idea of $(c,\beta)$-almost minimizer introduced in [9].
Citation: Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499
References:
[1]

P. Bauman, J. Park and D. Phillips, Existence of solutions to boundary value problems for smectic liquid crystals,, submitted., (). Google Scholar

[2]

P. Bauman and D. Phillips, Analysis and stability of bent core liquid crystal fibers,, submitted., (). Google Scholar

[3]

G. Carbou, Regularity for critical points of a nonlocal energy,, Calc. Var. Partial Differential Equations, 5 (1997), 409. Google Scholar

[4]

J. Chen and T. Lubensky, Landau-ginzburg mean-field theory for the nematic to smectic C and nematic to smectic A liquid crystal transistions,, Phys. Rev. A, 14 (1976), 1202. Google Scholar

[5]

P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals,", Clarendon Press, (1993). Google Scholar

[6]

F. C. Frank, On the theory of liquid crystals,, Discuss. Faraday Soc., 25 (1958), 19. doi: 10.1039/df9582500019. Google Scholar

[7]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,", Princeton University Press, (1983). Google Scholar

[8]

M. Giaquinta, G. Modica and J. Soucek, "Cartesian Currents in the Calculus of Variations II,", Springer, (1998). Google Scholar

[9]

R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism,, Commun. in Partial Differential Equations, 25 (2000), 1235. doi: 10.1080/03605300008821549. Google Scholar

[10]

R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations,, Comm. Math. Phys., 105 (1986), 547. doi: 10.1007/BF01238933. Google Scholar

[11]

S. T. Lagerwall, "Ferroelectric and Antiferroelectric Liquid Crystals,", Wiley-VCH, (1999). Google Scholar

[12]

F. M. Leslie, I. W. Stewart, T. Carlsson and M. Nakagawa, Equivalent smectic C liquid crystal energies,, Continuum Mech. Thermodyn., 3 (1991), 237. Google Scholar

[13]

I. Lukyanchuk, Phase transition between the cholesteric and twist grain boundary C phases,, Phys. Rev. E, 57 (1998), 574. doi: 10.1103/PhysRevE.57.574. Google Scholar

[14]

C. W. Oseen, The theory of liquid crystals,, Trans. Faraday Soc., 29 (1933), 883. doi: 10.1039/tf9332900883. Google Scholar

[15]

M. A. Osipov and S. A. Pikin, Dipolar and quadrupolar ordering in ferroelectric liquid crystals,, J. Phys. II France, 5 (1995), 1223. Google Scholar

[16]

J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals,, SIAM J. Appl. Math., 66 (2006), 2107. doi: 10.1137/050641120. Google Scholar

[17]

J. Park, F. Chen and J. Shen, Modeling and simulation of switchings in ferroelectric liquid crystals,, Discrete and Cont. Dyn. Syst., 26 (2010), 1419. Google Scholar

[18]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps,, J. Differential Geom., 17 (1982), 307. Google Scholar

[19]

______, Boundary regularity and the Dirichlet problem for harmonic maps,, J. Differential Geom., 18 (1983), 253. Google Scholar

[20]

L. Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps,", Birkäuser Verlag, (1996). Google Scholar

show all references

References:
[1]

P. Bauman, J. Park and D. Phillips, Existence of solutions to boundary value problems for smectic liquid crystals,, submitted., (). Google Scholar

[2]

P. Bauman and D. Phillips, Analysis and stability of bent core liquid crystal fibers,, submitted., (). Google Scholar

[3]

G. Carbou, Regularity for critical points of a nonlocal energy,, Calc. Var. Partial Differential Equations, 5 (1997), 409. Google Scholar

[4]

J. Chen and T. Lubensky, Landau-ginzburg mean-field theory for the nematic to smectic C and nematic to smectic A liquid crystal transistions,, Phys. Rev. A, 14 (1976), 1202. Google Scholar

[5]

P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals,", Clarendon Press, (1993). Google Scholar

[6]

F. C. Frank, On the theory of liquid crystals,, Discuss. Faraday Soc., 25 (1958), 19. doi: 10.1039/df9582500019. Google Scholar

[7]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,", Princeton University Press, (1983). Google Scholar

[8]

M. Giaquinta, G. Modica and J. Soucek, "Cartesian Currents in the Calculus of Variations II,", Springer, (1998). Google Scholar

[9]

R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism,, Commun. in Partial Differential Equations, 25 (2000), 1235. doi: 10.1080/03605300008821549. Google Scholar

[10]

R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations,, Comm. Math. Phys., 105 (1986), 547. doi: 10.1007/BF01238933. Google Scholar

[11]

S. T. Lagerwall, "Ferroelectric and Antiferroelectric Liquid Crystals,", Wiley-VCH, (1999). Google Scholar

[12]

F. M. Leslie, I. W. Stewart, T. Carlsson and M. Nakagawa, Equivalent smectic C liquid crystal energies,, Continuum Mech. Thermodyn., 3 (1991), 237. Google Scholar

[13]

I. Lukyanchuk, Phase transition between the cholesteric and twist grain boundary C phases,, Phys. Rev. E, 57 (1998), 574. doi: 10.1103/PhysRevE.57.574. Google Scholar

[14]

C. W. Oseen, The theory of liquid crystals,, Trans. Faraday Soc., 29 (1933), 883. doi: 10.1039/tf9332900883. Google Scholar

[15]

M. A. Osipov and S. A. Pikin, Dipolar and quadrupolar ordering in ferroelectric liquid crystals,, J. Phys. II France, 5 (1995), 1223. Google Scholar

[16]

J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals,, SIAM J. Appl. Math., 66 (2006), 2107. doi: 10.1137/050641120. Google Scholar

[17]

J. Park, F. Chen and J. Shen, Modeling and simulation of switchings in ferroelectric liquid crystals,, Discrete and Cont. Dyn. Syst., 26 (2010), 1419. Google Scholar

[18]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps,, J. Differential Geom., 17 (1982), 307. Google Scholar

[19]

______, Boundary regularity and the Dirichlet problem for harmonic maps,, J. Differential Geom., 18 (1983), 253. Google Scholar

[20]

L. Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps,", Birkäuser Verlag, (1996). Google Scholar

[1]

Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1

[2]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[3]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[4]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[5]

Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899

[6]

Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495

[7]

Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303

[8]

Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291

[9]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[10]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic & Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[11]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[12]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[13]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[14]

Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707

[15]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[16]

Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45

[17]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[18]

Junyu Lin. Uniqueness of harmonic map heat flows and liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 739-755. doi: 10.3934/dcds.2013.33.739

[19]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[20]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]