April  2013, 33(4): 1499-1511. doi: 10.3934/dcds.2013.33.1499

Partial regularity of minimum energy configurations in ferroelectric liquid crystals

1. 

Department of Mathematics, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 120-749, South Korea

2. 

Department of Mathematics, Chungnam National University, 99 Daehak-ro, Gung-Dong Yuseong-gu, Daejeon 305-764, South Korea

Received  July 2011 Revised  September 2012 Published  October 2012

Considered here is a system of smectic liquid crystals possessing polarizations described by the Oseen-Frank and Chen-Lubensky energies. We establish partial regularity of minimizers for the governing energy functional using the idea of $(c,\beta)$-almost minimizer introduced in [9].
Citation: Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499
References:
[1]

P. Bauman, J. Park and D. Phillips, Existence of solutions to boundary value problems for smectic liquid crystals,, submitted., ().   Google Scholar

[2]

P. Bauman and D. Phillips, Analysis and stability of bent core liquid crystal fibers,, submitted., ().   Google Scholar

[3]

G. Carbou, Regularity for critical points of a nonlocal energy,, Calc. Var. Partial Differential Equations, 5 (1997), 409.   Google Scholar

[4]

J. Chen and T. Lubensky, Landau-ginzburg mean-field theory for the nematic to smectic C and nematic to smectic A liquid crystal transistions,, Phys. Rev. A, 14 (1976), 1202.   Google Scholar

[5]

P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals,", Clarendon Press, (1993).   Google Scholar

[6]

F. C. Frank, On the theory of liquid crystals,, Discuss. Faraday Soc., 25 (1958), 19.  doi: 10.1039/df9582500019.  Google Scholar

[7]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,", Princeton University Press, (1983).   Google Scholar

[8]

M. Giaquinta, G. Modica and J. Soucek, "Cartesian Currents in the Calculus of Variations II,", Springer, (1998).   Google Scholar

[9]

R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism,, Commun. in Partial Differential Equations, 25 (2000), 1235.  doi: 10.1080/03605300008821549.  Google Scholar

[10]

R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations,, Comm. Math. Phys., 105 (1986), 547.  doi: 10.1007/BF01238933.  Google Scholar

[11]

S. T. Lagerwall, "Ferroelectric and Antiferroelectric Liquid Crystals,", Wiley-VCH, (1999).   Google Scholar

[12]

F. M. Leslie, I. W. Stewart, T. Carlsson and M. Nakagawa, Equivalent smectic C liquid crystal energies,, Continuum Mech. Thermodyn., 3 (1991), 237.   Google Scholar

[13]

I. Lukyanchuk, Phase transition between the cholesteric and twist grain boundary C phases,, Phys. Rev. E, 57 (1998), 574.  doi: 10.1103/PhysRevE.57.574.  Google Scholar

[14]

C. W. Oseen, The theory of liquid crystals,, Trans. Faraday Soc., 29 (1933), 883.  doi: 10.1039/tf9332900883.  Google Scholar

[15]

M. A. Osipov and S. A. Pikin, Dipolar and quadrupolar ordering in ferroelectric liquid crystals,, J. Phys. II France, 5 (1995), 1223.   Google Scholar

[16]

J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals,, SIAM J. Appl. Math., 66 (2006), 2107.  doi: 10.1137/050641120.  Google Scholar

[17]

J. Park, F. Chen and J. Shen, Modeling and simulation of switchings in ferroelectric liquid crystals,, Discrete and Cont. Dyn. Syst., 26 (2010), 1419.   Google Scholar

[18]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps,, J. Differential Geom., 17 (1982), 307.   Google Scholar

[19]

______, Boundary regularity and the Dirichlet problem for harmonic maps,, J. Differential Geom., 18 (1983), 253.   Google Scholar

[20]

L. Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps,", Birkäuser Verlag, (1996).   Google Scholar

show all references

References:
[1]

P. Bauman, J. Park and D. Phillips, Existence of solutions to boundary value problems for smectic liquid crystals,, submitted., ().   Google Scholar

[2]

P. Bauman and D. Phillips, Analysis and stability of bent core liquid crystal fibers,, submitted., ().   Google Scholar

[3]

G. Carbou, Regularity for critical points of a nonlocal energy,, Calc. Var. Partial Differential Equations, 5 (1997), 409.   Google Scholar

[4]

J. Chen and T. Lubensky, Landau-ginzburg mean-field theory for the nematic to smectic C and nematic to smectic A liquid crystal transistions,, Phys. Rev. A, 14 (1976), 1202.   Google Scholar

[5]

P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals,", Clarendon Press, (1993).   Google Scholar

[6]

F. C. Frank, On the theory of liquid crystals,, Discuss. Faraday Soc., 25 (1958), 19.  doi: 10.1039/df9582500019.  Google Scholar

[7]

M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,", Princeton University Press, (1983).   Google Scholar

[8]

M. Giaquinta, G. Modica and J. Soucek, "Cartesian Currents in the Calculus of Variations II,", Springer, (1998).   Google Scholar

[9]

R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism,, Commun. in Partial Differential Equations, 25 (2000), 1235.  doi: 10.1080/03605300008821549.  Google Scholar

[10]

R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid crystal configurations,, Comm. Math. Phys., 105 (1986), 547.  doi: 10.1007/BF01238933.  Google Scholar

[11]

S. T. Lagerwall, "Ferroelectric and Antiferroelectric Liquid Crystals,", Wiley-VCH, (1999).   Google Scholar

[12]

F. M. Leslie, I. W. Stewart, T. Carlsson and M. Nakagawa, Equivalent smectic C liquid crystal energies,, Continuum Mech. Thermodyn., 3 (1991), 237.   Google Scholar

[13]

I. Lukyanchuk, Phase transition between the cholesteric and twist grain boundary C phases,, Phys. Rev. E, 57 (1998), 574.  doi: 10.1103/PhysRevE.57.574.  Google Scholar

[14]

C. W. Oseen, The theory of liquid crystals,, Trans. Faraday Soc., 29 (1933), 883.  doi: 10.1039/tf9332900883.  Google Scholar

[15]

M. A. Osipov and S. A. Pikin, Dipolar and quadrupolar ordering in ferroelectric liquid crystals,, J. Phys. II France, 5 (1995), 1223.   Google Scholar

[16]

J. Park and M. C. Calderer, Analysis of nonlocal electrostatic effects in chiral smectic c liquid crystals,, SIAM J. Appl. Math., 66 (2006), 2107.  doi: 10.1137/050641120.  Google Scholar

[17]

J. Park, F. Chen and J. Shen, Modeling and simulation of switchings in ferroelectric liquid crystals,, Discrete and Cont. Dyn. Syst., 26 (2010), 1419.   Google Scholar

[18]

R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps,, J. Differential Geom., 17 (1982), 307.   Google Scholar

[19]

______, Boundary regularity and the Dirichlet problem for harmonic maps,, J. Differential Geom., 18 (1983), 253.   Google Scholar

[20]

L. Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps,", Birkäuser Verlag, (1996).   Google Scholar

[1]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[2]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[3]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[9]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]