April  2013, 33(4): 1513-1544. doi: 10.3934/dcds.2013.33.1513

Geometric aspects of transformations of forces acting upon a swimmer in a 3-D incompressible fluid

1. 

Department of Mathematics, Washington State University, Pullman, WA 99164-3113, United States

Received  October 2011 Revised  April 2012 Published  October 2012

Our goal in this paper is to investigate how the geometric shape of a swimmer affects the forces acting upon it in a 3-$D$ incompressible fluid, such as governed by the non-stationary Stokes or Navier-Stokes equations. Namely, we are interested in the following question: How will the swimmer's internal forces (i.e., not moving the center of swimmer's mass when it is not inside a fluid) ``transform'' their actions when the swimmer is placed into a fluid (thus, possibly, creating its self-propelling motion)?We focus on the case when the swimmer's body consists of either small parallelepipeds or balls. Such problems are of interest in biology and engineering application dealing with propulsion systems in fluids.
Citation: Alexander Khapalov, Giang Trinh. Geometric aspects of transformations of forces acting upon a swimmer in a 3-D incompressible fluid. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1513-1544. doi: 10.3934/dcds.2013.33.1513
References:
[1]

F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for low reynolds number Sswimmers: An example,, J. Nonlinear Sci., 18 (2008), 27. Google Scholar

[2]

J. M. Ball, J. E. Mardsen and M. Slemrod, Controllable for distributed bilinear systems,, SIAM J. Control. Opt., (1982), 575. Google Scholar

[3]

L. E. Becker, S. A. Koehler and H. A. Stone, On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer,, J. Fluid Mech., 490 (2003), 15. Google Scholar

[4]

S. Childress, "Mechanics of Swimming and Flying,", Cambridge University Press, (1981). Google Scholar

[5]

Gi. Dal Maso, A. DeSimone and M. Morandotti, An existence and uniqueness result for the motion of self-propelled micro-swimmers,, SIAM J. Math. Anal., 43 (2011), 1345. doi: 10.1137/10080083X. Google Scholar

[6]

T. Fakuda, et al, Steering mechanism and swimming experiment of micro mobile robot in water,, Proc. Micro Electro Mechanical Systems (MEMS'95), (1995), 300. Google Scholar

[7]

L. J. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion,, J. Comp. Physics, 77 (1988), 85. doi: 10.1016/0021-9991(88)90158-1. Google Scholar

[8]

L. J. Fauci, Computational modeling of the swimming of biflagellated algal cells,, Contemporary Mathematics, 141 (1993), 91. doi: 10.1090/conm/141/1212579. Google Scholar

[9]

G. P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid,, Arch. Ration. Mech. Anal., 148 (1999), 53. doi: 10.1007/s002050050156. Google Scholar

[10]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in, (2002), 653. Google Scholar

[11]

J. Gray, Study in animal locomotion IV - the propulsive power of the dolphin,, J. Exp. Biology, 10 (1032), 192. Google Scholar

[12]

J. Gray and G. J. Hancock, The propulsion of sea-urchin spermatozoa,, J. Exp. Biol., 32 (1955). Google Scholar

[13]

S. Guo, et al., Afin type of micro-robot in pipe,, Proc. of the 2002 Int. Symp. on micromechatronics and human science (MHS 2002), (2002), 93. Google Scholar

[14]

M. E. Gurtin, "Introduction to Continuum Mechanics,'', Academic Press, (1981). Google Scholar

[15]

M. F. Hawthorne, J. I. Zink, J. M. Skelton, M. J. Bayer, Ch. Liu, E. Livshits, R. Baer and D. Neuhauser, Electrical or photocontrol of rotary motion of a metallacarborane,, Science, 303 (1849). Google Scholar

[16]

V. Happel, and H. Brenner, "Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media,", Prentice Hall, (1965). Google Scholar

[17]

S. Hirose, "Biologically Inspired Robots: Snake-Like Locomotors and Manipulators,", Oxford University Press, (1993). Google Scholar

[18]

E. Kanso, J. E. Marsden, C. W. Rowley and J. Melli-Huber, Locomotion of articulated bodies in a perfect fluid,, J. Nonlinear Science, 15 (2005), 255. Google Scholar

[19]

A. Y. Khapalov, The well-posedness of a model of an apparatus swimming in the 2-D Stokes fluid,, Techn. Rep. 2005-5, (): 2005. Google Scholar

[20]

A. Y. Khapalov, Local controllability for a "swimming'' model,, SIAM J. Cont. Opt., 46 (2007), 655. doi: 10.1137/050638424. Google Scholar

[21]

A. Y. Khapalov, Geometric aspects of controllability for a swimming phenomenon,, Appl. Math. Optim., 57 (2008), 98. doi: 10.1007/s00245-007-9013-x. Google Scholar

[22]

A. Y. Khapalov, Micro motions of a 2-D swimming model governed by multiplicative controls,, Nonlinear Analysis: Theory, 71 (2009), 1970. Google Scholar

[23]

A. Y. Khapalov and S. Eubanks, The wellposedness of a 2-D swimming model governed in the nonstationary Stokes fluid by multiplicative controls,, Applicable Analysis, 88 (2009), 1763. doi: 10.1080/00036810903401222. Google Scholar

[24]

A. Y. Khapalov, "Controllability of Partial Differential Equations Governed by Multiplicative Controls,'', Lecture Notes in Mathematics Series, (1995). Google Scholar

[25]

J. Koiller, F. Ehlers and R. Montgomery, Problems and progress in microswimming,, J. Nonlinear Sci., 6 (1996), 507. Google Scholar

[26]

L. G. Leal, The Slow Motion of Slender Rod-Like Particles in a Second- Order Fluid,, J. Fluid Mech., 69 (1975), 305. Google Scholar

[27]

M. J. Lighthill, "Mathematics of Biofluid Dynamics,'', Philadelphia, (1975). Google Scholar

[28]

R. Mason and J. W. Burdick, Experiments in carangiform robotic fish locomotion,, Proc. IEEE Int. Conf. Robotics and Automation, (2000), 428. Google Scholar

[29]

K. A. McIsaac and J. P. Ostrowski, Motion planning for dynamic eel-like robots,, Proc. IEEE Int. Conf. Robotics and Automation, (2000), 1695. Google Scholar

[30]

S. Martinez and J. Cort'es, Geometric control of robotic locomotion systems,, Proc. X Fall Workshop on Geometry and Physics, 4 (2001), 183. Google Scholar

[31]

K. A. Morgansen, V. Duindam, R. J. Mason, J. W. Burdick and R. M. Murray, Nonlinear control methods for planar carangiform robot fish locomotion,, Proc. IEEE Int. Conf. Robotics and Automation, (2001), 427. Google Scholar

[32]

C. S. Peskin, Numerical analysis of blood flow in the heart,, J. Comp. Physics, 25 (1977), 220. doi: 10.1016/0021-9991(77)90100-0. Google Scholar

[33]

C. S. Peskin and D. M. McQueen, A general method for the computer simulation of biological systems interacting with fluids,, SEB Symposium on biological fluid dynamics, (1994), 5. Google Scholar

[34]

J. San Martin, T. Takashi and M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms,, Quart. Appl. Math., 65 (2007), 405. Google Scholar

[35]

J. San Martin, J.-F. Scheid, T. Takashi and M. Tucsnak, An initial and boundary value problem modeling of fish-like swimming,, Arch. Ration. Mech. Anal., 188 (2008), 429. doi: 10.1007/s00205-007-0092-2. Google Scholar

[36]

A. Shapere and F. Wilczeck, Geometry of self-propulsion at low Reynolds number,, J. Fluid Mech., 198 (1989), 557. Google Scholar

[37]

M. Sigalotti and J.-C. Vivalda, Controllability properties of a class of systems modeling swimming microscopic organisms,, ESAIM: COCV, (2009). Google Scholar

[38]

G. I. Taylor, Analysis of the swimming of microscopic organisms,, Proc. R. Soc. Lond. A, 209 (1951), 447. Google Scholar

[39]

G. I. Taylor, Analysis of the swimming of long and narrow animals,, Proc. R. Soc. Lond. A, 214 (1952). Google Scholar

[40]

R. Temam, "Navier-Stokes Equations,", North-Holland, (1984). Google Scholar

[41]

M. S. Trintafyllou, G. S. Trintafyllou and D. K. P. Yue, Hydrodynamics of fishlike swimming,, Ann. Rev. Fluid Mech., 32 (2000), 33. doi: 10.1146/annurev.fluid.32.1.33. Google Scholar

[42]

E. D. Tytell, C.-Y. Hsu, T. L. Williams, A. H. Cohen and L. J. Fauci, Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming,, Proc. Natl Acad Sci USA, 107 (2010), 19832. doi: 10.1073/pnas.1011564107. Google Scholar

[43]

T. Y. Wu, Hydrodynamics of swimming fish and cetaceans,, Adv. Appl. Math., 11 (1971), 1. Google Scholar

show all references

References:
[1]

F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for low reynolds number Sswimmers: An example,, J. Nonlinear Sci., 18 (2008), 27. Google Scholar

[2]

J. M. Ball, J. E. Mardsen and M. Slemrod, Controllable for distributed bilinear systems,, SIAM J. Control. Opt., (1982), 575. Google Scholar

[3]

L. E. Becker, S. A. Koehler and H. A. Stone, On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer,, J. Fluid Mech., 490 (2003), 15. Google Scholar

[4]

S. Childress, "Mechanics of Swimming and Flying,", Cambridge University Press, (1981). Google Scholar

[5]

Gi. Dal Maso, A. DeSimone and M. Morandotti, An existence and uniqueness result for the motion of self-propelled micro-swimmers,, SIAM J. Math. Anal., 43 (2011), 1345. doi: 10.1137/10080083X. Google Scholar

[6]

T. Fakuda, et al, Steering mechanism and swimming experiment of micro mobile robot in water,, Proc. Micro Electro Mechanical Systems (MEMS'95), (1995), 300. Google Scholar

[7]

L. J. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion,, J. Comp. Physics, 77 (1988), 85. doi: 10.1016/0021-9991(88)90158-1. Google Scholar

[8]

L. J. Fauci, Computational modeling of the swimming of biflagellated algal cells,, Contemporary Mathematics, 141 (1993), 91. doi: 10.1090/conm/141/1212579. Google Scholar

[9]

G. P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid,, Arch. Ration. Mech. Anal., 148 (1999), 53. doi: 10.1007/s002050050156. Google Scholar

[10]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in, (2002), 653. Google Scholar

[11]

J. Gray, Study in animal locomotion IV - the propulsive power of the dolphin,, J. Exp. Biology, 10 (1032), 192. Google Scholar

[12]

J. Gray and G. J. Hancock, The propulsion of sea-urchin spermatozoa,, J. Exp. Biol., 32 (1955). Google Scholar

[13]

S. Guo, et al., Afin type of micro-robot in pipe,, Proc. of the 2002 Int. Symp. on micromechatronics and human science (MHS 2002), (2002), 93. Google Scholar

[14]

M. E. Gurtin, "Introduction to Continuum Mechanics,'', Academic Press, (1981). Google Scholar

[15]

M. F. Hawthorne, J. I. Zink, J. M. Skelton, M. J. Bayer, Ch. Liu, E. Livshits, R. Baer and D. Neuhauser, Electrical or photocontrol of rotary motion of a metallacarborane,, Science, 303 (1849). Google Scholar

[16]

V. Happel, and H. Brenner, "Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media,", Prentice Hall, (1965). Google Scholar

[17]

S. Hirose, "Biologically Inspired Robots: Snake-Like Locomotors and Manipulators,", Oxford University Press, (1993). Google Scholar

[18]

E. Kanso, J. E. Marsden, C. W. Rowley and J. Melli-Huber, Locomotion of articulated bodies in a perfect fluid,, J. Nonlinear Science, 15 (2005), 255. Google Scholar

[19]

A. Y. Khapalov, The well-posedness of a model of an apparatus swimming in the 2-D Stokes fluid,, Techn. Rep. 2005-5, (): 2005. Google Scholar

[20]

A. Y. Khapalov, Local controllability for a "swimming'' model,, SIAM J. Cont. Opt., 46 (2007), 655. doi: 10.1137/050638424. Google Scholar

[21]

A. Y. Khapalov, Geometric aspects of controllability for a swimming phenomenon,, Appl. Math. Optim., 57 (2008), 98. doi: 10.1007/s00245-007-9013-x. Google Scholar

[22]

A. Y. Khapalov, Micro motions of a 2-D swimming model governed by multiplicative controls,, Nonlinear Analysis: Theory, 71 (2009), 1970. Google Scholar

[23]

A. Y. Khapalov and S. Eubanks, The wellposedness of a 2-D swimming model governed in the nonstationary Stokes fluid by multiplicative controls,, Applicable Analysis, 88 (2009), 1763. doi: 10.1080/00036810903401222. Google Scholar

[24]

A. Y. Khapalov, "Controllability of Partial Differential Equations Governed by Multiplicative Controls,'', Lecture Notes in Mathematics Series, (1995). Google Scholar

[25]

J. Koiller, F. Ehlers and R. Montgomery, Problems and progress in microswimming,, J. Nonlinear Sci., 6 (1996), 507. Google Scholar

[26]

L. G. Leal, The Slow Motion of Slender Rod-Like Particles in a Second- Order Fluid,, J. Fluid Mech., 69 (1975), 305. Google Scholar

[27]

M. J. Lighthill, "Mathematics of Biofluid Dynamics,'', Philadelphia, (1975). Google Scholar

[28]

R. Mason and J. W. Burdick, Experiments in carangiform robotic fish locomotion,, Proc. IEEE Int. Conf. Robotics and Automation, (2000), 428. Google Scholar

[29]

K. A. McIsaac and J. P. Ostrowski, Motion planning for dynamic eel-like robots,, Proc. IEEE Int. Conf. Robotics and Automation, (2000), 1695. Google Scholar

[30]

S. Martinez and J. Cort'es, Geometric control of robotic locomotion systems,, Proc. X Fall Workshop on Geometry and Physics, 4 (2001), 183. Google Scholar

[31]

K. A. Morgansen, V. Duindam, R. J. Mason, J. W. Burdick and R. M. Murray, Nonlinear control methods for planar carangiform robot fish locomotion,, Proc. IEEE Int. Conf. Robotics and Automation, (2001), 427. Google Scholar

[32]

C. S. Peskin, Numerical analysis of blood flow in the heart,, J. Comp. Physics, 25 (1977), 220. doi: 10.1016/0021-9991(77)90100-0. Google Scholar

[33]

C. S. Peskin and D. M. McQueen, A general method for the computer simulation of biological systems interacting with fluids,, SEB Symposium on biological fluid dynamics, (1994), 5. Google Scholar

[34]

J. San Martin, T. Takashi and M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms,, Quart. Appl. Math., 65 (2007), 405. Google Scholar

[35]

J. San Martin, J.-F. Scheid, T. Takashi and M. Tucsnak, An initial and boundary value problem modeling of fish-like swimming,, Arch. Ration. Mech. Anal., 188 (2008), 429. doi: 10.1007/s00205-007-0092-2. Google Scholar

[36]

A. Shapere and F. Wilczeck, Geometry of self-propulsion at low Reynolds number,, J. Fluid Mech., 198 (1989), 557. Google Scholar

[37]

M. Sigalotti and J.-C. Vivalda, Controllability properties of a class of systems modeling swimming microscopic organisms,, ESAIM: COCV, (2009). Google Scholar

[38]

G. I. Taylor, Analysis of the swimming of microscopic organisms,, Proc. R. Soc. Lond. A, 209 (1951), 447. Google Scholar

[39]

G. I. Taylor, Analysis of the swimming of long and narrow animals,, Proc. R. Soc. Lond. A, 214 (1952). Google Scholar

[40]

R. Temam, "Navier-Stokes Equations,", North-Holland, (1984). Google Scholar

[41]

M. S. Trintafyllou, G. S. Trintafyllou and D. K. P. Yue, Hydrodynamics of fishlike swimming,, Ann. Rev. Fluid Mech., 32 (2000), 33. doi: 10.1146/annurev.fluid.32.1.33. Google Scholar

[42]

E. D. Tytell, C.-Y. Hsu, T. L. Williams, A. H. Cohen and L. J. Fauci, Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming,, Proc. Natl Acad Sci USA, 107 (2010), 19832. doi: 10.1073/pnas.1011564107. Google Scholar

[43]

T. Y. Wu, Hydrodynamics of swimming fish and cetaceans,, Adv. Appl. Math., 11 (1971), 1. Google Scholar

[1]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[2]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[3]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[4]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[5]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[6]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[7]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[8]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[9]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[10]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[11]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[12]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[13]

Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697

[14]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[15]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[16]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[17]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[18]

Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375

[19]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[20]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]