• Previous Article
    On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian
  • DCDS Home
  • This Issue
  • Next Article
    Continua of local minimizers in a quasilinear model of phase transitions
January  2013, 33(1): 153-161. doi: 10.3934/dcds.2013.33.153

Some bifurcation results for rapidly growing nonlinearities

1. 

School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia

Received  August 2011 Revised  January 2012 Published  September 2012

We prove results on when nonlinear elliptic equations have infinitely many bifurcations if the nonlinearities grow rapidly.
Citation: E. N. Dancer. Some bifurcation results for rapidly growing nonlinearities. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 153-161. doi: 10.3934/dcds.2013.33.153
References:
[1]

K. C. Chang, "Infinite-dimensional Morse Theory and Multiple Solution Problems,", Birkhäuser Boston Inc., (1993). Google Scholar

[2]

E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems,, Proc. London Math. Soc., s3-27 (1973), 3. doi: 10.1112/plms/s3-27.4.747. Google Scholar

[3]

E. N. Dancer, Global solution branches for positive mappings,, Arch. Rational Mech. Anal., 52 (1973), 181. doi: 10.1007/BF00282326. Google Scholar

[4]

E. N. Dancer, Stable solutions on $\mathbb R^n$ and the primary branch of some non-self-adjoint convex problems,, Differential Integral Equations, 17 (2004), 961. Google Scholar

[5]

E. N. Dancer, Finite Morse index solutions of exponential problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 173. Google Scholar

[6]

E. N. Dancer, Finite Morse index solutions of supercritical problems,, J. Reine Angew. Math., 620 (2008), 213. doi: 10.1515/CRELLE.2008.055. Google Scholar

[7]

E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large,, J. Differential Equations, 37 (1980), 404. doi: 10.1016/0022-0396(80)90107-2. Google Scholar

[8]

E. N. Dancer, Real analyticity and non-degeneracy,, Math. Ann., 325 (2003), 369. Google Scholar

[9]

E. N. Dancer, Stable and finite Morse index solutions on $\mathbf R^n$ or on bounded domains with small diffusion,, Trans. Amer. Math. Soc., 357 (2005), 1225. doi: 10.1090/S0002-9947-04-03543-3. Google Scholar

[10]

E. N. Dancer, Infinitely many turning points for some supercritical problems,, Ann. Mat. Pura Appl. (4), 178 (2000), 225. doi: 10.1007/BF02505896. Google Scholar

[11]

E. N. Dancer and A. Farina, On the classification of solutions of $-\Delta u=e^u$ on $\mathbb R^N$: stability outside a compact set and applications,, Proc. Amer. Math. Soc., 137 (2009), 1333. doi: 10.1090/S0002-9939-08-09772-4. Google Scholar

[12]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1981). Google Scholar

[13]

G. Whyburn, "Topological Analysis,", Princeton University Press, (1958). Google Scholar

show all references

References:
[1]

K. C. Chang, "Infinite-dimensional Morse Theory and Multiple Solution Problems,", Birkhäuser Boston Inc., (1993). Google Scholar

[2]

E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems,, Proc. London Math. Soc., s3-27 (1973), 3. doi: 10.1112/plms/s3-27.4.747. Google Scholar

[3]

E. N. Dancer, Global solution branches for positive mappings,, Arch. Rational Mech. Anal., 52 (1973), 181. doi: 10.1007/BF00282326. Google Scholar

[4]

E. N. Dancer, Stable solutions on $\mathbb R^n$ and the primary branch of some non-self-adjoint convex problems,, Differential Integral Equations, 17 (2004), 961. Google Scholar

[5]

E. N. Dancer, Finite Morse index solutions of exponential problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 173. Google Scholar

[6]

E. N. Dancer, Finite Morse index solutions of supercritical problems,, J. Reine Angew. Math., 620 (2008), 213. doi: 10.1515/CRELLE.2008.055. Google Scholar

[7]

E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large,, J. Differential Equations, 37 (1980), 404. doi: 10.1016/0022-0396(80)90107-2. Google Scholar

[8]

E. N. Dancer, Real analyticity and non-degeneracy,, Math. Ann., 325 (2003), 369. Google Scholar

[9]

E. N. Dancer, Stable and finite Morse index solutions on $\mathbf R^n$ or on bounded domains with small diffusion,, Trans. Amer. Math. Soc., 357 (2005), 1225. doi: 10.1090/S0002-9947-04-03543-3. Google Scholar

[10]

E. N. Dancer, Infinitely many turning points for some supercritical problems,, Ann. Mat. Pura Appl. (4), 178 (2000), 225. doi: 10.1007/BF02505896. Google Scholar

[11]

E. N. Dancer and A. Farina, On the classification of solutions of $-\Delta u=e^u$ on $\mathbb R^N$: stability outside a compact set and applications,, Proc. Amer. Math. Soc., 137 (2009), 1333. doi: 10.1090/S0002-9939-08-09772-4. Google Scholar

[12]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1981). Google Scholar

[13]

G. Whyburn, "Topological Analysis,", Princeton University Press, (1958). Google Scholar

[1]

Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147

[2]

C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189

[3]

Varga K. Kalantarov, Sergey Zelik. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2037-2054. doi: 10.3934/cpaa.2012.11.2037

[4]

Zuji Guo, Zhaoli Liu. Perturbed elliptic equations with oscillatory nonlinearities. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3567-3585. doi: 10.3934/dcds.2012.32.3567

[5]

Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798

[6]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[7]

Pablo Amster, Mónica Clapp. Periodic solutions of resonant systems with rapidly rotating nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 373-383. doi: 10.3934/dcds.2011.31.373

[8]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[9]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[10]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

[11]

Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015

[12]

Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97

[13]

Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455

[14]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[15]

Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich. Simultaneous continuation of infinitely many sinks at homoclinic bifurcations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 693-736. doi: 10.3934/dcds.2011.29.693

[16]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[17]

Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555

[18]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[19]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[20]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]