Citation: |
[1] |
J. C. Alexander, B. Hunt, I. Kan and J. A. Yorke, Intermingled basins for the triangle map, Ergodic Theory and Dynamical Systems, 16 (1996), 651-662.doi: 10.1017/S0143385700009020. |
[2] |
J. C. Alexander, I. Kan, J. A. Yorke and Z. You, Riddled basins, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2 (1992), 795-813. |
[3] |
D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory, Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč, 23 (1970), 3-36. |
[4] |
P. Ashwin, J. Buescu and I. Stewart, Bubbling of attractors and synchronisation of chaotic oscillators, Phys. Lett. A, 193 (1994), 126-139.doi: 10.1016/0375-9601(94)90947-4. |
[5] |
L. Barreira and Y. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory," University Lecture Series 23, American Mathematical Society, Providence, RI, 2002. |
[6] |
G. D. Birkhoff, Probability and physical systems, Bull. Amer. Math. Soc., 38 (1932), 361-379.doi: 10.1090/S0002-9904-1932-05389-7. |
[7] |
C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel Journal of Mathematics, 115 (2000), 157-193.doi: 10.1007/BF02810585. |
[8] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975. |
[9] |
M. Brin and G. Stuck, "Introduction to Dynamical Systems," Cambridge University Press, Cambridge, 2002. |
[10] |
K. Burns, C. Pugh, M. Shub and A. Wilkinson, Recent results about stable ergodicity, in "Smooth ergodic theory and its applications (Seattle, WA, 1999)", 327-366, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001. |
[11] |
B. Fayad, Topologically mixing flows with pure point spectrum, in "Dynamical Systems, part II", Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Normale Superiore, Pisa, 2003, 113-136. |
[12] |
P. Grete and M. Markus, Residence time distributions for double-scroll attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 1007-1015.doi: 10.1142/S0218127407017720. |
[13] |
F. Hofbauer, J. Hofbauer, P. Raith and T. Steinberger, Intermingled basins in a two species system, J. Math. Biol., 49 (2004), 293-309.doi: 10.1007/s00285-003-0253-3. |
[14] |
I. Kan, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Amer. Math. Soc., 31 (1994), 68-74.doi: 10.1090/S0273-0979-1994-00507-5. |
[15] |
T. Kapitaniak, Uncertainty in coupled chaotic systems: Locally intermingled basins of attraction, Phys. Rev. E(3), 53 (1996), part B, 6555-6557.doi: 10.1103/PhysRevE.53.6555. |
[16] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems, With a Supplementary Chapter by Katok and Leonardo Mendoza," Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. |
[17] |
Y. C. Lai, C. Grebogi and J. A. Yorke, Intermingled basins and riddling bifurcation in chaotic dynamical systems, Differential equations and applications, 138-163, Int. Press, Cambridge, MA, 1996. |
[18] |
I. Melbourne and A. Windsor, A $C^\infty$ diffeomorphism with infinitely many intermingled basins, Ergodic Theory Dynamical Systems, 25 (2005), 1951-1959.doi: 10.1017/S0143385705000325. |
[19] |
Hiroyuki Nakajima and Yoshisuke Ueda, Riddled basins of the optimal states in learning dynamical systems, Phys. D, 99 (1996), 35-44.doi: 10.1016/S0167-2789(96)00131-5. |
[20] |
E. Ott, J. C. Alexander, I. Kan, J. C. Sommerer and J. A. Yorke, The transition to chaotic attractors with riddled basins, Phys. D, 76 (1994), 384-410.doi: 10.1016/0167-2789(94)90047-7. |
[21] |
E. Ott, J. C. Sommerer, J. C. Alexander, I. Kan and J. A. Yorke, Scaling behavior of chaotic systems with riddled basins, Phys. Rev. Lett., 71 (1993), 4134-4137.doi: 10.1103/PhysRevLett.71.4134. |
[22] |
J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Géométrie complexe et systémes dynamiques (Orsay, 1995), Astérisque No. 261 (2000), xiii-xiv, 335-347. |
[23] |
J. Palis and W. De Melo, "Geometric Theory of Dynamical Systems: An Introduction," Translated from the Portuguese by A. K. Manning, Springer-Verlag, New York-Berlin, 1982. |
[24] |
T. N. Palmer, A local deterministic model of quantum spin measurement, Proc. Roy. Soc. London Ser. A, 451 (1995), 585-608.doi: 10.1098/rspa.1995.0145. |
[25] |
M. W.Parker, Undecidability in $R^n$: riddled basins, the KAM tori, and the stability of the solar system, Philos. Sci., 70 (2003), 359-382.doi: 10.1086/375472. |
[26] |
Ja. B. Pesin, Characteristic Ljapunov exponents, and ergodic properties of smooth dynamical systems with invariant measure, (Russian) Dokl. Akad. Nauk SSSR, 226 (1976), 774-777. |
[27] |
Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents, (Russian) Izv. Akad. Nauk SSSR Ser. Mat, 40 (1976), 1332-1379, 1440. |
[28] |
Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, (Russian) Uspehi Mat. Nauk, 32 (1977), 55-112, 287. |
[29] |
C. Pugh and M. Shub, Ergodic attractors, Trans. Amer. Math. Soc., 312 (1989), 1-54.doi: 10.1090/S0002-9947-1989-0983869-1. |
[30] |
A. Saito and K. Kaneko, Inaccessibility in decision procedures, in "Unconventional models of computation", UMC'2K (Brussels, 2000), 215-233, Discrete Math. Theor. Comput. Sci. Springer, London, 2001. |
[31] |
A. Saito and K. Kaneko, Inaccessibility and undecidability in computation, geometry, and dynamical systems, Phys. D, 155 (2001), 1-33.doi: 10.1016/S0167-2789(01)00232-9. |
[32] |
J. C. Sommerer and E. Ott, Intermingled basins of attraction: uncomputability in a simple physical system, Phys. Lett. A, 214 (1996), 243-251.doi: 10.1016/0375-9601(96)00165-X. |
[33] |
S. van Strien, Transitive maps which are not ergodic with respect to Lebesgue measure, Ergodic Theory Dynam. Systems, 16 (1996), 833-848. |
[34] |
P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[35] |
A. Windsor, Minimal but not uniquely ergodic diffeomorphisms, in "Smooth Ergodic Theory and its Applications (Proc. Symp. Pure Math., 69)", (Ed. A. Katok et al.), American Mathematical Society, Providence, RI, 1999, 809-824. |
[36] |
A. Yakubu and C. Carlos, Interplay between local dynamics and dispersal in discrete-time metapopulation models, Journal of Theoretical Biology, 218 (2002), 273-288. |