April  2013, 33(4): 1583-1601. doi: 10.3934/dcds.2013.33.1583

Boundary stabilization of the waves in partially rectangular domains

1. 

Faculty of Education, Wakayama University, 930 Sakaedani, Wakayama-shi, Wakayama-Ken 640-8510, Japan

Received  April 2011 Revised  September 2012 Published  October 2012

We study the energy decay to the wave equation with a dissipative boundary condition on partially rectangular domains. We give a polynomial order energy decay under the assumption that the damping term may vanish on the rectangular part. A resolvent estimate for the correspondent stationary problem is proved.
Citation: Hisashi Nishiyama. Boundary stabilization of the waves in partially rectangular domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1583-1601. doi: 10.3934/dcds.2013.33.1583
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Un example d'urilization des notions de propagation pour le controle et la stabilisation de problems hyperboliques,, Rend. sem. Mat. Univ. Pol. Torino Fascicolo speciale, 1988 (1989), 11. doi: 10.2307/479055. Google Scholar

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[3]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroup,, Math. Ann., 347 (2010), 455. doi: 10.1007/s00208-009-0439-0. Google Scholar

[4]

L. Bunimovich, On the ergodic properties of nowhere dispersing billiards,, Comm. Math. Phys., 65 (1979), 295. doi: 10.1007/BF01197884. Google Scholar

[5]

N. Burq, Décroissace de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel,, Acta Math., 1980 (1998), 1. doi: 10.1007/BF02392877. Google Scholar

[6]

N. Burq, A. Hassell and J. Wunsch, Spreading of quasimode in the Bunimovich stadium,, Proc. Amer. Math. Soc., 135 (2007), 1029. doi: 10.1090/S0002-9939-06-08597-2. Google Scholar

[7]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Let., 14 (2007), 35. Google Scholar

[8]

F. Cardoso and G. Vodev, On the stabilization of the wave equation by the boundary,, Serdica Math. J., 28 (2002), 233. doi: 10.1016/S0924-0136(02)00391-6. Google Scholar

[9]

A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations,, J. Differential Equations, 59 (1985), 145. doi: 10.1016/0022-0396(85)90151-2. Google Scholar

[10]

G. Lebeau, Equation des ondes amorties,, in, (1996), 73. Google Scholar

[11]

G. Lebeau and L.Robbiano, Stabilizaion de léquation des ondes par le bord,, Duke Math. J., 86 (1997), 465. doi: 10.1215/S0012-7094-97-08614-2. Google Scholar

[12]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630. doi: 10.1007/s00033-004-3073-4. Google Scholar

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Review, 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[14]

H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains,, Math. Res. Letters, 16 (2009), 881. Google Scholar

[15]

K. D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Diff. Eq., 240 (2007), 92. doi: 10.1016/j.jde.2007.05.016. Google Scholar

[16]

K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain,, Discrete and Continuous Dynamical Systems, 20 (2008), 1057. doi: 10.3934/dcds.2008.20.1057. Google Scholar

[17]

J. Rauch and M. Taylor, Exponential decay of solutions to symmetric hyperbolic equations in bounded domeins,, Indiana J. Math., 24 (1974), 79. doi: 10.1512/iumj.1974.24.24004. Google Scholar

[18]

J. Ralston, Gaussian beams and propagation of singularities,, in, 23 (1982), 206. Google Scholar

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Un example d'urilization des notions de propagation pour le controle et la stabilisation de problems hyperboliques,, Rend. sem. Mat. Univ. Pol. Torino Fascicolo speciale, 1988 (1989), 11. doi: 10.2307/479055. Google Scholar

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[3]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroup,, Math. Ann., 347 (2010), 455. doi: 10.1007/s00208-009-0439-0. Google Scholar

[4]

L. Bunimovich, On the ergodic properties of nowhere dispersing billiards,, Comm. Math. Phys., 65 (1979), 295. doi: 10.1007/BF01197884. Google Scholar

[5]

N. Burq, Décroissace de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel,, Acta Math., 1980 (1998), 1. doi: 10.1007/BF02392877. Google Scholar

[6]

N. Burq, A. Hassell and J. Wunsch, Spreading of quasimode in the Bunimovich stadium,, Proc. Amer. Math. Soc., 135 (2007), 1029. doi: 10.1090/S0002-9939-06-08597-2. Google Scholar

[7]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Let., 14 (2007), 35. Google Scholar

[8]

F. Cardoso and G. Vodev, On the stabilization of the wave equation by the boundary,, Serdica Math. J., 28 (2002), 233. doi: 10.1016/S0924-0136(02)00391-6. Google Scholar

[9]

A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations,, J. Differential Equations, 59 (1985), 145. doi: 10.1016/0022-0396(85)90151-2. Google Scholar

[10]

G. Lebeau, Equation des ondes amorties,, in, (1996), 73. Google Scholar

[11]

G. Lebeau and L.Robbiano, Stabilizaion de léquation des ondes par le bord,, Duke Math. J., 86 (1997), 465. doi: 10.1215/S0012-7094-97-08614-2. Google Scholar

[12]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630. doi: 10.1007/s00033-004-3073-4. Google Scholar

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Review, 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[14]

H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains,, Math. Res. Letters, 16 (2009), 881. Google Scholar

[15]

K. D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Diff. Eq., 240 (2007), 92. doi: 10.1016/j.jde.2007.05.016. Google Scholar

[16]

K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain,, Discrete and Continuous Dynamical Systems, 20 (2008), 1057. doi: 10.3934/dcds.2008.20.1057. Google Scholar

[17]

J. Rauch and M. Taylor, Exponential decay of solutions to symmetric hyperbolic equations in bounded domeins,, Indiana J. Math., 24 (1974), 79. doi: 10.1512/iumj.1974.24.24004. Google Scholar

[18]

J. Ralston, Gaussian beams and propagation of singularities,, in, 23 (1982), 206. Google Scholar

[1]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[2]

Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67

[3]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[4]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[5]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[6]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[7]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[8]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[9]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[10]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[11]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic & Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[12]

Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 775-789. doi: 10.3934/jimo.2018070

[13]

Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5879-5908. doi: 10.3934/dcds.2015.35.5879

[14]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[15]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[16]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[17]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[18]

L.R. Ritter, Akif Ibragimov, Jay R. Walton, Catherine J. McNeal. Stability analysis using an energy estimate approach of a reaction-diffusion model of atherogenesis. Conference Publications, 2009, 2009 (Special) : 630-639. doi: 10.3934/proc.2009.2009.630

[19]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[20]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]