April  2013, 33(4): 1583-1601. doi: 10.3934/dcds.2013.33.1583

Boundary stabilization of the waves in partially rectangular domains

1. 

Faculty of Education, Wakayama University, 930 Sakaedani, Wakayama-shi, Wakayama-Ken 640-8510, Japan

Received  April 2011 Revised  September 2012 Published  October 2012

We study the energy decay to the wave equation with a dissipative boundary condition on partially rectangular domains. We give a polynomial order energy decay under the assumption that the damping term may vanish on the rectangular part. A resolvent estimate for the correspondent stationary problem is proved.
Citation: Hisashi Nishiyama. Boundary stabilization of the waves in partially rectangular domains. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1583-1601. doi: 10.3934/dcds.2013.33.1583
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Un example d'urilization des notions de propagation pour le controle et la stabilisation de problems hyperboliques, Rend. sem. Mat. Univ. Pol. Torino Fascicolo speciale, 1988, Hyperbolic equations, (1989), 11-31. doi: 10.2307/479055.

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[3]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroup, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.

[4]

L. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Comm. Math. Phys., 65 (1979), 295-312. doi: 10.1007/BF01197884.

[5]

N. Burq, Décroissace de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math., 1980 (1998), 1-29. doi: 10.1007/BF02392877.

[6]

N. Burq, A. Hassell and J. Wunsch, Spreading of quasimode in the Bunimovich stadium, Proc. Amer. Math. Soc., 135 (2007), 1029-1037. doi: 10.1090/S0002-9939-06-08597-2.

[7]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Let., 14 (2007), 35-47.

[8]

F. Cardoso and G. Vodev, On the stabilization of the wave equation by the boundary, Serdica Math. J., 28 (2002), 233-240. doi: 10.1016/S0924-0136(02)00391-6.

[9]

A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations, 59 (1985), 145-154. doi: 10.1016/0022-0396(85)90151-2.

[10]

G. Lebeau, Equation des ondes amorties, in "Algebraic and Geometric Methods in Mathematical Physics" (eds. A. Boutet de Monvel and V. Marchenko), Kluwer Academic Publishers, (1996), 73-109.

[11]

G. Lebeau and L.Robbiano, Stabilizaion de léquation des ondes par le bord, Duke Math. J., 86 (1997), 465-490. doi: 10.1215/S0012-7094-97-08614-2.

[12]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4.

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68. doi: 10.1137/1030001.

[14]

H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains, Math. Res. Letters, 16 (2009), 881-894.

[15]

K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Diff. Eq., 240 (2007), 92-124. doi: 10.1016/j.jde.2007.05.016.

[16]

K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain, Discrete and Continuous Dynamical Systems, 20 (2008), 1057-1093. doi: 10.3934/dcds.2008.20.1057.

[17]

J. Rauch and M. Taylor, Exponential decay of solutions to symmetric hyperbolic equations in bounded domeins, Indiana J. Math., 24 (1974), 79-86. doi: 10.1512/iumj.1974.24.24004.

[18]

J. Ralston, Gaussian beams and propagation of singularities, in "Studies in Partial Differential Equations" (eds. W. Littman), MAA studies on Mathematics, 23 Math. Assoc. Amer, (1982), 206-248.

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Un example d'urilization des notions de propagation pour le controle et la stabilisation de problems hyperboliques, Rend. sem. Mat. Univ. Pol. Torino Fascicolo speciale, 1988, Hyperbolic equations, (1989), 11-31. doi: 10.2307/479055.

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[3]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroup, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.

[4]

L. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Comm. Math. Phys., 65 (1979), 295-312. doi: 10.1007/BF01197884.

[5]

N. Burq, Décroissace de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math., 1980 (1998), 1-29. doi: 10.1007/BF02392877.

[6]

N. Burq, A. Hassell and J. Wunsch, Spreading of quasimode in the Bunimovich stadium, Proc. Amer. Math. Soc., 135 (2007), 1029-1037. doi: 10.1090/S0002-9939-06-08597-2.

[7]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Let., 14 (2007), 35-47.

[8]

F. Cardoso and G. Vodev, On the stabilization of the wave equation by the boundary, Serdica Math. J., 28 (2002), 233-240. doi: 10.1016/S0924-0136(02)00391-6.

[9]

A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations, 59 (1985), 145-154. doi: 10.1016/0022-0396(85)90151-2.

[10]

G. Lebeau, Equation des ondes amorties, in "Algebraic and Geometric Methods in Mathematical Physics" (eds. A. Boutet de Monvel and V. Marchenko), Kluwer Academic Publishers, (1996), 73-109.

[11]

G. Lebeau and L.Robbiano, Stabilizaion de léquation des ondes par le bord, Duke Math. J., 86 (1997), 465-490. doi: 10.1215/S0012-7094-97-08614-2.

[12]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644. doi: 10.1007/s00033-004-3073-4.

[13]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68. doi: 10.1137/1030001.

[14]

H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains, Math. Res. Letters, 16 (2009), 881-894.

[15]

K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Diff. Eq., 240 (2007), 92-124. doi: 10.1016/j.jde.2007.05.016.

[16]

K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain, Discrete and Continuous Dynamical Systems, 20 (2008), 1057-1093. doi: 10.3934/dcds.2008.20.1057.

[17]

J. Rauch and M. Taylor, Exponential decay of solutions to symmetric hyperbolic equations in bounded domeins, Indiana J. Math., 24 (1974), 79-86. doi: 10.1512/iumj.1974.24.24004.

[18]

J. Ralston, Gaussian beams and propagation of singularities, in "Studies in Partial Differential Equations" (eds. W. Littman), MAA studies on Mathematics, 23 Math. Assoc. Amer, (1982), 206-248.

[1]

Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67

[2]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[3]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[4]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[5]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[6]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[7]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[8]

Debora Amadori, Fatima Al-Zahrà Aqel. On the decay in $ W^{1,\infty} $ for the 1D semilinear damped wave equation on a bounded domain. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5359-5396. doi: 10.3934/dcds.2021080

[9]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[10]

Monica Conti, Lorenzo Liverani, Vittorino Pata. On the optimal decay rate of the weakly damped wave equation. Communications on Pure and Applied Analysis, 2022, 21 (10) : 3421-3424. doi: 10.3934/cpaa.2022107

[11]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[12]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[13]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[14]

Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021059

[15]

Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial and Management Optimization, 2019, 15 (2) : 775-789. doi: 10.3934/jimo.2018070

[16]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic and Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[17]

Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5879-5908. doi: 10.3934/dcds.2015.35.5879

[18]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[19]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[20]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (197)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]