-
Previous Article
Fractal bodies invisible in 2 and 3 directions
- DCDS Home
- This Issue
-
Next Article
Boundary stabilization of the waves in partially rectangular domains
Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations
1. | Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Av. Esteve Terradas 5, 08860 Castelldefels, Spain |
2. | Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain |
References:
[1] |
J. Math. Anal. Applic., 328 (2007), 1108-1116.
doi: 10.1016/j.jmaa.2006.05.078. |
[2] |
J. Math. Anal. Applic., 329 (2007), 1161-1169.
doi: 10.1016/j.jmaa.2006.07.039. |
[3] |
$2^{nd}$ edition, Chapman & Hall/CRC, Boca Raton, 2003. |
[4] |
Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291. |
[5] |
SIAM J. Math. Anal., 21 (1990), 1235-1244.
doi: 10.1137/0521068. |
[6] |
Nonlinearity, 13 (2000), 1337-1342.
doi: 10.1088/0951-7715/13/4/319. |
[7] |
J. Differential Equations, 234 (2007), 161-176.
doi: 10.1016/j.jde.2006.11.004. |
[8] |
J. Math. Anal. Applic, 342 (2008), 931-942.
doi: 10.1016/j.jmaa.2007.12.060. |
[9] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 3869-3876.
doi: 10.1142/S0218127409025195. |
[10] |
Discrete Continuous Dynam. Systems - A, 25 (2009), 1129-1141.
doi: 10.3934/dcds.2009.25.1129. |
[11] |
Discrete Continuous Dynam. Systems - A, 31 (2011), 25-34.
doi: 10.3934/dcds.2011.31.25. |
[12] |
J. Math. Anal. Appl., 381 (2011), 582-589.
doi: 10.1016/j.jmaa.2011.02.084. |
[13] |
Discrete Continuous Dynam. Systems - B, 7 (2007), 53-76. |
[14] |
Discrete Continuous Dynam. Systems - B, 15 (2011), 197-215.
doi: 10.3934/dcdsb.2011.15.197. |
[15] |
J. Differential Equations, 185 (2002), 54-73.
doi: 10.1006/jdeq.2002.4172. |
[16] |
J. Differential Equations, 3 (1967), 546-570. |
[17] |
$2^{nd}$ edition, Springer-Verlag, New York, 1985. |
show all references
References:
[1] |
J. Math. Anal. Applic., 328 (2007), 1108-1116.
doi: 10.1016/j.jmaa.2006.05.078. |
[2] |
J. Math. Anal. Applic., 329 (2007), 1161-1169.
doi: 10.1016/j.jmaa.2006.07.039. |
[3] |
$2^{nd}$ edition, Chapman & Hall/CRC, Boca Raton, 2003. |
[4] |
Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291. |
[5] |
SIAM J. Math. Anal., 21 (1990), 1235-1244.
doi: 10.1137/0521068. |
[6] |
Nonlinearity, 13 (2000), 1337-1342.
doi: 10.1088/0951-7715/13/4/319. |
[7] |
J. Differential Equations, 234 (2007), 161-176.
doi: 10.1016/j.jde.2006.11.004. |
[8] |
J. Math. Anal. Applic, 342 (2008), 931-942.
doi: 10.1016/j.jmaa.2007.12.060. |
[9] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 3869-3876.
doi: 10.1142/S0218127409025195. |
[10] |
Discrete Continuous Dynam. Systems - A, 25 (2009), 1129-1141.
doi: 10.3934/dcds.2009.25.1129. |
[11] |
Discrete Continuous Dynam. Systems - A, 31 (2011), 25-34.
doi: 10.3934/dcds.2011.31.25. |
[12] |
J. Math. Anal. Appl., 381 (2011), 582-589.
doi: 10.1016/j.jmaa.2011.02.084. |
[13] |
Discrete Continuous Dynam. Systems - B, 7 (2007), 53-76. |
[14] |
Discrete Continuous Dynam. Systems - B, 15 (2011), 197-215.
doi: 10.3934/dcdsb.2011.15.197. |
[15] |
J. Differential Equations, 185 (2002), 54-73.
doi: 10.1006/jdeq.2002.4172. |
[16] |
J. Differential Equations, 3 (1967), 546-570. |
[17] |
$2^{nd}$ edition, Springer-Verlag, New York, 1985. |
[1] |
Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007 |
[2] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[3] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[4] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[5] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[6] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[7] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[8] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[9] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[10] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[11] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[12] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[13] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021019 |
[14] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021016 |
[15] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[16] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[17] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[18] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021072 |
[19] |
Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021103 |
[20] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]