Advanced Search
Article Contents
Article Contents

Fractal bodies invisible in 2 and 3 directions

Abstract Related Papers Cited by
  • We study the problem of invisibility for bodies with a mirror surface in the framework of geometrical optics. We show that for any two given directions it is possible to construct a two-dimensional fractal body invisible in these directions. Moreover, there exists a three-dimensional fractal body invisible in three orthogonal directions. The work continues the previous study in [1,12], where two-dimensional bodies invisible in one direction and three-dimensional bodies invisible in one and two orthogonal directions were constructed.
    Mathematics Subject Classification: Primary: 78A05, 37D50; Secondary: 76G25.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction, Nonlinearity, 22 (2009), 1247-1258.doi: 10.1088/0951-7715/22/6/001.


    P. Bachurin, K. Khanin, J. Marklof and A. Plakhov, Perfect retroreflectors and billiard dynamics, J. Modern Dynam., 5 (2011), 33-48.


    D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems," Birkhäuser (2005).


    G. Buttazzo and B. Kawohl, On Newton's problem of minimal resistance, Math. Intell., 15 (1993), 7-12.doi: 10.1007/BF03024318.


    M. Comte and T. Lachand-Robert, Newton's problem of the body of minimal resistance under a single-impact assumption, Calc. Var. Partial Differ. Equ., 12 (2001), 173-211.doi: 10.1007/PL00009911.


    T. Lachand-Robert and E. Oudet, Minimizing within convex bodies using a convex hull method, SIAM J. Optim., 16 (2006), 368-379.doi: 10.1137/040608039.


    T. Lachand-Robert and M. A. Peletier, Newton's problem of the body of minimal resistance in the class of convex developable functions, Math. Nachr., 226 (2001), 153-176.doi: 10.1002/1522-2616(200106)226:1<153::AID-MANA153>3.3.CO;2-U.


    I. Newton, Philosophiae naturalis principia mathematica, (1687).


    A. Plakhov, Scattering in billiards and problems of Newtonian aerodynamics, Russ. Math. Surv., 64 (2009), 873-938.doi: 10.1070/RM2009v064n05ABEH004642.


    A. Plakhov, Mathematical retroreflectors, Discr. Contin. Dynam. Syst.-A, 30 (2011), 1211-1235.doi: 10.3934/dcds.2011.30.1211.


    A. Plakhov and A. Aleksenko, The problem of the body of revolution of minimal resistance, ESAIM Control Optim. Calc. Var. 16 (2010), 206-220.


    A. Plakhov and V. Roshchina, Invisibility in billiards, Nonlinearity, 24 (2011), 847-854.doi: 10.1088/0951-7715/24/3/007.

  • 加载中

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint