January  2013, 33(1): 163-172. doi: 10.3934/dcds.2013.33.163

Continua of local minimizers in a quasilinear model of phase transitions

1. 

Department of Mathematics and Center N.T.I.S., University of West Bohemia, P.O. Box 314,306 14 Pilsen, Czech Republic

2. 

Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, United States

Received  July 2011 Revised  February 2012 Published  September 2012

In this paper we study critical points of the functional \begin{eqnarray*} J_{\epsilon}(u):= \frac{\epsilon^p}{p}\int_0^1|u_x|^pdx+\int_0^1F(u)dx, \; u∈w^{1,p}(0,1), \end{eqnarray*} where F:$\mathbb{R}$→$\mathbb{R}$ is assumed to be a double-well potential. This functional represents the total free energy in phase transition models. We consider a non-classical choice for $F$ modeled on $F(u)=|1-u^2|^{\alpha}$ where $1< \alpha < p$. This choice leads to the existence of multiple continua of critical points that are not present in the classical case $\alpha= p = 2$. We prove that the interior of these continua are local minimizers. The energy of these local minimizers is strictly greater than the global minimum of $J_{\epsilon}$. In particular, the existence of these continua suggests an alternative explanation for the slow dynamics observed in phase transition models.
Citation: Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163
References:
[1]

J. Carr and R. L. Pego, Metastable patterns in solutions of u t = ε2 $u_{x x}$ - f(u),, Comm. Pure Appl. Math., 42 (1989), 523.  doi: 10.1002/cpa.3160420502.  Google Scholar

[2]

P. Drábek, A. Kufner and F. Nicolosi, "Quasilinear Elliptic Equations with Degenerations and Singularities,", De Gruyter Series in Nonlinear Analysis and Applications 5, (1997).   Google Scholar

[3]

P. Drábek, R. Manásevich and P. Takáč, Slow dynamics in a quasilinear model for phase transitions in one space dimension,, In, 540 (2009), 95.   Google Scholar

[4]

P. Drábek and S. Robinson, Continua of local minimizers in a non-smooth model of phase transitions,, Z. Angew. Math. Phys., 62 (2011), 609.   Google Scholar

show all references

References:
[1]

J. Carr and R. L. Pego, Metastable patterns in solutions of u t = ε2 $u_{x x}$ - f(u),, Comm. Pure Appl. Math., 42 (1989), 523.  doi: 10.1002/cpa.3160420502.  Google Scholar

[2]

P. Drábek, A. Kufner and F. Nicolosi, "Quasilinear Elliptic Equations with Degenerations and Singularities,", De Gruyter Series in Nonlinear Analysis and Applications 5, (1997).   Google Scholar

[3]

P. Drábek, R. Manásevich and P. Takáč, Slow dynamics in a quasilinear model for phase transitions in one space dimension,, In, 540 (2009), 95.   Google Scholar

[4]

P. Drábek and S. Robinson, Continua of local minimizers in a non-smooth model of phase transitions,, Z. Angew. Math. Phys., 62 (2011), 609.   Google Scholar

[1]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[2]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[3]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[6]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[9]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]