April  2013, 33(4): 1645-1655. doi: 10.3934/dcds.2013.33.1645

Non-integrability of generalized Yang-Mills Hamiltonian system

1. 

College of Mathematics, & Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

2. 

College of Mathematics, Jilin University, Changchun 130012, China

Received  November 2011 Revised  May 2012 Published  October 2012

We show that the generalized Yang-Mills system with Hamiltonian $H=\frac12(y_1^2+y_2^2)+\frac12(ax_1^2+bx_2^2)+\frac14cx_1^4+\frac14dx_2^4+\frac12ex_1^2x_2^2$ is meromorphically integrable in Liouvillian sense(i.e., the existence of an additional meromorphic first integral) if and only if (A) $e=0$, or (B) $c=d=e$, or (C) $a=b, e=3c=3d$, or (D) $b=4a, e=3c, d=8c$, or (E) $b=4a, e=6c, d=16c$, or (F) $b=4a, e=3d, c=8d$, or (G) $b=4a, e=6d, c=16d$. Therefore, we get a complete classification of the Yang-Mills Hamiltonian system in sense of integrability and non-integrability.
Citation: Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645
References:
[1]

P. B. Acosta-Humanez, D. Blazquez-Sanz and C. V. Contreras, On Hamiltonian potentials with quartic polynomial normal variational equations,, Nonlinear Studies The International Journal, 16 (2009), 299.   Google Scholar

[2]

A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, Fields Inst. Commun., 7 (1996), 5.   Google Scholar

[3]

F. Baldassarri, On Algebraic solution of Lamé's differential equation,, J. Differential Equations, 41 (1981), 44.   Google Scholar

[4]

G. Baumann, W. G. Glöckle and T. F. Nonnenmacher, Sigular point analysis and integrals of motion for coupled nonlinear Schrödinger equations,, Proc. R. Soc. Lond. A, 434 (1991), 263.   Google Scholar

[5]

D. Boucher and J. A. Weil, About nonintegrability in the Friedmann-Robertson-Walker cosmological model,, Brazilian Journal of Physics, 37 (2007), 398.  doi: 10.1007/s10765-007-0152-8.  Google Scholar

[6]

T. Bountis, H. Segur and F. Vivaldi, Integrable Hamiltonian systems and the Painleve property,, Phys. Rev. A., 25 (1982), 1257.   Google Scholar

[7]

R. C. Churchill, D. L. Rod and M. F. Singer, Group-theoretic obstructions to integrability,, Ergod. Th & Dynam. Sys. (1), 5 (1995), 15.   Google Scholar

[8]

L. A. A. Cohelo, J. E. F. Skea and T. J. Stuchi, On the non-integrability of a class of Hamiltonian cosmological models,, Brazilian Journal of Physics, 35 (2005).   Google Scholar

[9]

B. Dwork, Differential operators with nilponent $p$-curvature,, Amer. J. Math., 112 (1990), 749.  doi: 10.2307/2374806.  Google Scholar

[10]

A. Elipe, J. Hietarinta and S. Tompaidis, Comment on paper by S. Kasperczuk, Celest. Mech 58:387-391(1994),, Celest. Mech. Dynam. Astr., 62 (1995), 191.  doi: 10.1007/BF00692087.  Google Scholar

[11]

R. Fridberg, T. D. Lee and R. Padjen, Class of scalar-field solutions in three space dimensions,, Phys. Rev. D., 13 (1976), 2739.   Google Scholar

[12]

G. H. Halphen, Traité des fonctions elliptiques VOl. I, II,, Gauthier-Villars, (1888).   Google Scholar

[13]

J. Hietarinta, Direct methods for the search of the second invariant,, Phys. Rep., 147 (1987), 87.  doi: 10.1016/0370-1573(87)90089-5.  Google Scholar

[14]

S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system,, Celest. Mech. Dynam. Astr., 58 (1994), 387.   Google Scholar

[15]

W. L. Li and S. Y. Shi, Non-integrability of Hénon-Heiles System,, Celest. Mech. Dynam. Astr., 109 (2010), 1.   Google Scholar

[16]

A. J. Maciejewski, M. Przybylska, T. Stachowiak and M. Szydlowski, Global integrability of cosmological scalar fields,, J. Phys. A., 41 (2008).   Google Scholar

[17]

A. J. Maciejewski, M. Przybylska and J. A. Weil, Non-integrability of the generalized spring-pendulum problem,, J. Phys. A., 37 (2004), 2579.   Google Scholar

[18]

A. J. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential,, J. Math. Phys., 46 (2005).   Google Scholar

[19]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves,, Soviet Phys. JETP., 38 (1974), 248.   Google Scholar

[20]

J. J. Morales-Ruiz, "Técnicas Algebraicas Para el Estudio de la Integrabilidad de Sistemas Hamiltonianos,", Ph.D. Thesis, (1989).   Google Scholar

[21]

J. J. Morales-Ruiz and C. Simó, Picard-Vessiot theory and Ziglin's theory,, J. Differential Equations, 107 (1994), 140.   Google Scholar

[22]

J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Birkhäuser Verlag, (1999).   Google Scholar

[23]

J. J. Morales-Ruiz and C. Simó, Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations,, J. Differential Equations, 129 (1996), 111.   Google Scholar

[24]

J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem,, Ergod. Th & Dynam. Sys., 25 (2005), 1237.   Google Scholar

[25]

J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Annales Scientifiques de l'école Normale Supéieure, 40 (2007), 845.   Google Scholar

[26]

J. J. Morales-Ruiz and S. Simon, On the meromorphic non-integrability of some $N$-body problems,, Discrete Contin. Dyn. Syst., 24 (2009), 1225.   Google Scholar

[27]

E. G. C. Poole, "Introduction to the Theory of Linear Differential Equations,", Oxford Univ. Press, (1936).   Google Scholar

[28]

R. Rajaraman and E. J. Weinberg, Internal symmetry and the semi-classical method in quantum field theory,, Phys. Rev. D., 11 (1975), 2950.   Google Scholar

[29]

Van der Put M and M. F. Singer, "Galois Theory of Linear Differential Equations,", volume 328 of Grundlehren der mathematischen Wissenshaften. Springer. Heidelberg, (2003).   Google Scholar

[30]

P. Vanhaecke, A special case of the Garnier system, (1,4)-polarised Abelian surfaces and their moduli,, Compositio Math., 29 (1994), 157.  doi: 10.1016/0165-0270(94)90123-6.  Google Scholar

[31]

E. T. Whittaker and E. T. Watson, "A Course of Modern Analysis,", Cambrige Univ. Press, (1969).   Google Scholar

[32]

V. E. Zakharv, M. F. Ivanov and L. I. Shoor, On anomalously slow stochastization in certain two-dimensional models of field theory,, Zh. Eksp. Teor. Fiz. Lett., 30 (1979), 39.   Google Scholar

[33]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II,, Funct. Anal. Appl., 16 (1983), 181.   Google Scholar

show all references

References:
[1]

P. B. Acosta-Humanez, D. Blazquez-Sanz and C. V. Contreras, On Hamiltonian potentials with quartic polynomial normal variational equations,, Nonlinear Studies The International Journal, 16 (2009), 299.   Google Scholar

[2]

A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, Fields Inst. Commun., 7 (1996), 5.   Google Scholar

[3]

F. Baldassarri, On Algebraic solution of Lamé's differential equation,, J. Differential Equations, 41 (1981), 44.   Google Scholar

[4]

G. Baumann, W. G. Glöckle and T. F. Nonnenmacher, Sigular point analysis and integrals of motion for coupled nonlinear Schrödinger equations,, Proc. R. Soc. Lond. A, 434 (1991), 263.   Google Scholar

[5]

D. Boucher and J. A. Weil, About nonintegrability in the Friedmann-Robertson-Walker cosmological model,, Brazilian Journal of Physics, 37 (2007), 398.  doi: 10.1007/s10765-007-0152-8.  Google Scholar

[6]

T. Bountis, H. Segur and F. Vivaldi, Integrable Hamiltonian systems and the Painleve property,, Phys. Rev. A., 25 (1982), 1257.   Google Scholar

[7]

R. C. Churchill, D. L. Rod and M. F. Singer, Group-theoretic obstructions to integrability,, Ergod. Th & Dynam. Sys. (1), 5 (1995), 15.   Google Scholar

[8]

L. A. A. Cohelo, J. E. F. Skea and T. J. Stuchi, On the non-integrability of a class of Hamiltonian cosmological models,, Brazilian Journal of Physics, 35 (2005).   Google Scholar

[9]

B. Dwork, Differential operators with nilponent $p$-curvature,, Amer. J. Math., 112 (1990), 749.  doi: 10.2307/2374806.  Google Scholar

[10]

A. Elipe, J. Hietarinta and S. Tompaidis, Comment on paper by S. Kasperczuk, Celest. Mech 58:387-391(1994),, Celest. Mech. Dynam. Astr., 62 (1995), 191.  doi: 10.1007/BF00692087.  Google Scholar

[11]

R. Fridberg, T. D. Lee and R. Padjen, Class of scalar-field solutions in three space dimensions,, Phys. Rev. D., 13 (1976), 2739.   Google Scholar

[12]

G. H. Halphen, Traité des fonctions elliptiques VOl. I, II,, Gauthier-Villars, (1888).   Google Scholar

[13]

J. Hietarinta, Direct methods for the search of the second invariant,, Phys. Rep., 147 (1987), 87.  doi: 10.1016/0370-1573(87)90089-5.  Google Scholar

[14]

S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system,, Celest. Mech. Dynam. Astr., 58 (1994), 387.   Google Scholar

[15]

W. L. Li and S. Y. Shi, Non-integrability of Hénon-Heiles System,, Celest. Mech. Dynam. Astr., 109 (2010), 1.   Google Scholar

[16]

A. J. Maciejewski, M. Przybylska, T. Stachowiak and M. Szydlowski, Global integrability of cosmological scalar fields,, J. Phys. A., 41 (2008).   Google Scholar

[17]

A. J. Maciejewski, M. Przybylska and J. A. Weil, Non-integrability of the generalized spring-pendulum problem,, J. Phys. A., 37 (2004), 2579.   Google Scholar

[18]

A. J. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential,, J. Math. Phys., 46 (2005).   Google Scholar

[19]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves,, Soviet Phys. JETP., 38 (1974), 248.   Google Scholar

[20]

J. J. Morales-Ruiz, "Técnicas Algebraicas Para el Estudio de la Integrabilidad de Sistemas Hamiltonianos,", Ph.D. Thesis, (1989).   Google Scholar

[21]

J. J. Morales-Ruiz and C. Simó, Picard-Vessiot theory and Ziglin's theory,, J. Differential Equations, 107 (1994), 140.   Google Scholar

[22]

J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Birkhäuser Verlag, (1999).   Google Scholar

[23]

J. J. Morales-Ruiz and C. Simó, Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations,, J. Differential Equations, 129 (1996), 111.   Google Scholar

[24]

J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem,, Ergod. Th & Dynam. Sys., 25 (2005), 1237.   Google Scholar

[25]

J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Annales Scientifiques de l'école Normale Supéieure, 40 (2007), 845.   Google Scholar

[26]

J. J. Morales-Ruiz and S. Simon, On the meromorphic non-integrability of some $N$-body problems,, Discrete Contin. Dyn. Syst., 24 (2009), 1225.   Google Scholar

[27]

E. G. C. Poole, "Introduction to the Theory of Linear Differential Equations,", Oxford Univ. Press, (1936).   Google Scholar

[28]

R. Rajaraman and E. J. Weinberg, Internal symmetry and the semi-classical method in quantum field theory,, Phys. Rev. D., 11 (1975), 2950.   Google Scholar

[29]

Van der Put M and M. F. Singer, "Galois Theory of Linear Differential Equations,", volume 328 of Grundlehren der mathematischen Wissenshaften. Springer. Heidelberg, (2003).   Google Scholar

[30]

P. Vanhaecke, A special case of the Garnier system, (1,4)-polarised Abelian surfaces and their moduli,, Compositio Math., 29 (1994), 157.  doi: 10.1016/0165-0270(94)90123-6.  Google Scholar

[31]

E. T. Whittaker and E. T. Watson, "A Course of Modern Analysis,", Cambrige Univ. Press, (1969).   Google Scholar

[32]

V. E. Zakharv, M. F. Ivanov and L. I. Shoor, On anomalously slow stochastization in certain two-dimensional models of field theory,, Zh. Eksp. Teor. Fiz. Lett., 30 (1979), 39.   Google Scholar

[33]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II,, Funct. Anal. Appl., 16 (1983), 181.   Google Scholar

[1]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[2]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[3]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[4]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296

[5]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[6]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[7]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[8]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[9]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[10]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[11]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[15]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[16]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[19]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]