\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-integrability of generalized Yang-Mills Hamiltonian system

Abstract / Introduction Related Papers Cited by
  • We show that the generalized Yang-Mills system with Hamiltonian $H=\frac12(y_1^2+y_2^2)+\frac12(ax_1^2+bx_2^2)+\frac14cx_1^4+\frac14dx_2^4+\frac12ex_1^2x_2^2$ is meromorphically integrable in Liouvillian sense(i.e., the existence of an additional meromorphic first integral) if and only if (A) $e=0$, or (B) $c=d=e$, or (C) $a=b, e=3c=3d$, or (D) $b=4a, e=3c, d=8c$, or (E) $b=4a, e=6c, d=16c$, or (F) $b=4a, e=3d, c=8d$, or (G) $b=4a, e=6d, c=16d$. Therefore, we get a complete classification of the Yang-Mills Hamiltonian system in sense of integrability and non-integrability.
    Mathematics Subject Classification: Primary: 70H06, 34M15; Secondary: 34M03.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. B. Acosta-Humanez, D. Blazquez-Sanz and C. V. Contreras, On Hamiltonian potentials with quartic polynomial normal variational equations, Nonlinear Studies The International Journal, 16 (2009), 299-314.

    [2]

    A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems, Fields Inst. Commun., 7 (1996), 5-56.

    [3]

    F. Baldassarri, On Algebraic solution of Lamé's differential equation, J. Differential Equations, 41 (1981), 44-58.

    [4]

    G. Baumann, W. G. Glöckle and T. F. Nonnenmacher, Sigular point analysis and integrals of motion for coupled nonlinear Schrödinger equations, Proc. R. Soc. Lond. A, 434 (1991), 263-278.

    [5]

    D. Boucher and J. A. Weil, About nonintegrability in the Friedmann-Robertson-Walker cosmological model, Brazilian Journal of Physics, 37 (2007), 398-405.doi: 10.1007/s10765-007-0152-8.

    [6]

    T. Bountis, H. Segur and F. Vivaldi, Integrable Hamiltonian systems and the Painleve property, Phys. Rev. A., 25 (1982), 1257-1264.

    [7]

    R. C. Churchill, D. L. Rod and M. F. Singer, Group-theoretic obstructions to integrability, Ergod. Th & Dynam. Sys. (1), 5 (1995), 15-48.

    [8]

    L. A. A. Cohelo, J. E. F. Skea and T. J. Stuchi, On the non-integrability of a class of Hamiltonian cosmological models, Brazilian Journal of Physics, 35 (2005).

    [9]

    B. Dwork, Differential operators with nilponent $p$-curvature, Amer. J. Math., 112 (1990), 749-786.doi: 10.2307/2374806.

    [10]

    A. Elipe, J. Hietarinta and S. Tompaidis, Comment on paper by S. Kasperczuk, Celest. Mech 58:387-391(1994), Celest. Mech. Dynam. Astr., 62 (1995), 191-192.doi: 10.1007/BF00692087.

    [11]

    R. Fridberg, T. D. Lee and R. Padjen, Class of scalar-field solutions in three space dimensions, Phys. Rev. D., 13 (1976), 2739-2761.

    [12]

    G. H. Halphen, Traité des fonctions elliptiques VOl. I, II, Gauthier-Villars, Paris, (1888).

    [13]

    J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep., 147 (1987), 87-154.doi: 10.1016/0370-1573(87)90089-5.

    [14]

    S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system, Celest. Mech. Dynam. Astr., 58 (1994), 387-391.

    [15]

    W. L. Li and S. Y. Shi, Non-integrability of Hénon-Heiles System, Celest. Mech. Dynam. Astr., 109 (2010), 1-12.

    [16]

    A. J. Maciejewski, M. Przybylska, T. Stachowiak and M. Szydlowski, Global integrability of cosmological scalar fields, J. Phys. A., 41 (2008), 26 pp. 465101.

    [17]

    A. J. Maciejewski, M. Przybylska and J. A. Weil, Non-integrability of the generalized spring-pendulum problem, J. Phys. A., 37 (2004), 2579-2597.

    [18]

    A. J. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, J. Math. Phys., 46 (2005), 062901.

    [19]

    S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Soviet Phys. JETP., 38 (1974), 248-253.

    [20]

    J. J. Morales-Ruiz, "Técnicas Algebraicas Para el Estudio de la Integrabilidad de Sistemas Hamiltonianos," Ph.D. Thesis, University of Barcelona, 1989.

    [21]

    J. J. Morales-Ruiz and C. Simó, Picard-Vessiot theory and Ziglin's theory, J. Differential Equations, 107 (1994), 140-162.

    [22]

    J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems," Birkhäuser Verlag, Basel, 1999.

    [23]

    J. J. Morales-Ruiz and C. Simó, Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Differential Equations, 129 (1996), 111-135.

    [24]

    J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem, Ergod. Th & Dynam. Sys., 25 (2005), 1237-1256.

    [25]

    J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Annales Scientifiques de l'école Normale Supéieure, 40 (2007), 845-884.

    [26]

    J. J. Morales-Ruiz and S. Simon, On the meromorphic non-integrability of some $N$-body problems, Discrete Contin. Dyn. Syst., 24 (2009), 1225-1273.

    [27]

    E. G. C. Poole, "Introduction to the Theory of Linear Differential Equations," Oxford Univ. Press, London, 1936.

    [28]

    R. Rajaraman and E. J. Weinberg, Internal symmetry and the semi-classical method in quantum field theory, Phys. Rev. D., 11 (1975), 2950-2966.

    [29]

    Van der Put M and M. F. Singer, "Galois Theory of Linear Differential Equations," volume 328 of Grundlehren der mathematischen Wissenshaften. Springer. Heidelberg, 2003.

    [30]

    P. Vanhaecke, A special case of the Garnier system, (1,4)-polarised Abelian surfaces and their moduli, Compositio Math., 29 (1994), 157-203.doi: 10.1016/0165-0270(94)90123-6.

    [31]

    E. T. Whittaker and E. T. Watson, "A Course of Modern Analysis," Cambrige Univ. Press, Cambrige, 1969.

    [32]

    V. E. Zakharv, M. F. Ivanov and L. I. Shoor, On anomalously slow stochastization in certain two-dimensional models of field theory, Zh. Eksp. Teor. Fiz. Lett., 30 (1979), 39-44.

    [33]

    S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II, Funct. Anal. Appl., 16 (1983), 181-189; 6-17.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(170) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return