-
Previous Article
Sobolev approximation for two-phase solutions of forward-backward parabolic problems
- DCDS Home
- This Issue
-
Next Article
Chaos in delay differential equations with applications in population dynamics
Non-integrability of generalized Yang-Mills Hamiltonian system
1. | College of Mathematics, & Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China |
2. | College of Mathematics, Jilin University, Changchun 130012, China |
References:
[1] |
P. B. Acosta-Humanez, D. Blazquez-Sanz and C. V. Contreras, On Hamiltonian potentials with quartic polynomial normal variational equations,, Nonlinear Studies The International Journal, 16 (2009), 299.
|
[2] |
A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, Fields Inst. Commun., 7 (1996), 5.
|
[3] |
F. Baldassarri, On Algebraic solution of Lamé's differential equation,, J. Differential Equations, 41 (1981), 44.
|
[4] |
G. Baumann, W. G. Glöckle and T. F. Nonnenmacher, Sigular point analysis and integrals of motion for coupled nonlinear Schrödinger equations,, Proc. R. Soc. Lond. A, 434 (1991), 263.
|
[5] |
D. Boucher and J. A. Weil, About nonintegrability in the Friedmann-Robertson-Walker cosmological model,, Brazilian Journal of Physics, 37 (2007), 398.
doi: 10.1007/s10765-007-0152-8. |
[6] |
T. Bountis, H. Segur and F. Vivaldi, Integrable Hamiltonian systems and the Painleve property,, Phys. Rev. A., 25 (1982), 1257.
|
[7] |
R. C. Churchill, D. L. Rod and M. F. Singer, Group-theoretic obstructions to integrability,, Ergod. Th & Dynam. Sys. (1), 5 (1995), 15.
|
[8] |
L. A. A. Cohelo, J. E. F. Skea and T. J. Stuchi, On the non-integrability of a class of Hamiltonian cosmological models,, Brazilian Journal of Physics, 35 (2005). Google Scholar |
[9] |
B. Dwork, Differential operators with nilponent $p$-curvature,, Amer. J. Math., 112 (1990), 749.
doi: 10.2307/2374806. |
[10] |
A. Elipe, J. Hietarinta and S. Tompaidis, Comment on paper by S. Kasperczuk, Celest. Mech 58:387-391(1994),, Celest. Mech. Dynam. Astr., 62 (1995), 191.
doi: 10.1007/BF00692087. |
[11] |
R. Fridberg, T. D. Lee and R. Padjen, Class of scalar-field solutions in three space dimensions,, Phys. Rev. D., 13 (1976), 2739.
|
[12] |
G. H. Halphen, Traité des fonctions elliptiques VOl. I, II,, Gauthier-Villars, (1888). Google Scholar |
[13] |
J. Hietarinta, Direct methods for the search of the second invariant,, Phys. Rep., 147 (1987), 87.
doi: 10.1016/0370-1573(87)90089-5. |
[14] |
S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system,, Celest. Mech. Dynam. Astr., 58 (1994), 387.
|
[15] |
W. L. Li and S. Y. Shi, Non-integrability of Hénon-Heiles System,, Celest. Mech. Dynam. Astr., 109 (2010), 1.
|
[16] |
A. J. Maciejewski, M. Przybylska, T. Stachowiak and M. Szydlowski, Global integrability of cosmological scalar fields,, J. Phys. A., 41 (2008).
|
[17] |
A. J. Maciejewski, M. Przybylska and J. A. Weil, Non-integrability of the generalized spring-pendulum problem,, J. Phys. A., 37 (2004), 2579.
|
[18] |
A. J. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential,, J. Math. Phys., 46 (2005).
|
[19] |
S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves,, Soviet Phys. JETP., 38 (1974), 248. Google Scholar |
[20] |
J. J. Morales-Ruiz, "Técnicas Algebraicas Para el Estudio de la Integrabilidad de Sistemas Hamiltonianos,", Ph.D. Thesis, (1989). Google Scholar |
[21] |
J. J. Morales-Ruiz and C. Simó, Picard-Vessiot theory and Ziglin's theory,, J. Differential Equations, 107 (1994), 140.
|
[22] |
J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Birkhäuser Verlag, (1999).
|
[23] |
J. J. Morales-Ruiz and C. Simó, Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations,, J. Differential Equations, 129 (1996), 111.
|
[24] |
J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem,, Ergod. Th & Dynam. Sys., 25 (2005), 1237.
|
[25] |
J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Annales Scientifiques de l'école Normale Supéieure, 40 (2007), 845.
|
[26] |
J. J. Morales-Ruiz and S. Simon, On the meromorphic non-integrability of some $N$-body problems,, Discrete Contin. Dyn. Syst., 24 (2009), 1225.
|
[27] |
E. G. C. Poole, "Introduction to the Theory of Linear Differential Equations,", Oxford Univ. Press, (1936). Google Scholar |
[28] |
R. Rajaraman and E. J. Weinberg, Internal symmetry and the semi-classical method in quantum field theory,, Phys. Rev. D., 11 (1975), 2950. Google Scholar |
[29] |
Van der Put M and M. F. Singer, "Galois Theory of Linear Differential Equations,", volume 328 of Grundlehren der mathematischen Wissenshaften. Springer. Heidelberg, (2003).
|
[30] |
P. Vanhaecke, A special case of the Garnier system, (1,4)-polarised Abelian surfaces and their moduli,, Compositio Math., 29 (1994), 157.
doi: 10.1016/0165-0270(94)90123-6. |
[31] |
E. T. Whittaker and E. T. Watson, "A Course of Modern Analysis,", Cambrige Univ. Press, (1969). Google Scholar |
[32] |
V. E. Zakharv, M. F. Ivanov and L. I. Shoor, On anomalously slow stochastization in certain two-dimensional models of field theory,, Zh. Eksp. Teor. Fiz. Lett., 30 (1979), 39. Google Scholar |
[33] |
S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II,, Funct. Anal. Appl., 16 (1983), 181. Google Scholar |
show all references
References:
[1] |
P. B. Acosta-Humanez, D. Blazquez-Sanz and C. V. Contreras, On Hamiltonian potentials with quartic polynomial normal variational equations,, Nonlinear Studies The International Journal, 16 (2009), 299.
|
[2] |
A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, Fields Inst. Commun., 7 (1996), 5.
|
[3] |
F. Baldassarri, On Algebraic solution of Lamé's differential equation,, J. Differential Equations, 41 (1981), 44.
|
[4] |
G. Baumann, W. G. Glöckle and T. F. Nonnenmacher, Sigular point analysis and integrals of motion for coupled nonlinear Schrödinger equations,, Proc. R. Soc. Lond. A, 434 (1991), 263.
|
[5] |
D. Boucher and J. A. Weil, About nonintegrability in the Friedmann-Robertson-Walker cosmological model,, Brazilian Journal of Physics, 37 (2007), 398.
doi: 10.1007/s10765-007-0152-8. |
[6] |
T. Bountis, H. Segur and F. Vivaldi, Integrable Hamiltonian systems and the Painleve property,, Phys. Rev. A., 25 (1982), 1257.
|
[7] |
R. C. Churchill, D. L. Rod and M. F. Singer, Group-theoretic obstructions to integrability,, Ergod. Th & Dynam. Sys. (1), 5 (1995), 15.
|
[8] |
L. A. A. Cohelo, J. E. F. Skea and T. J. Stuchi, On the non-integrability of a class of Hamiltonian cosmological models,, Brazilian Journal of Physics, 35 (2005). Google Scholar |
[9] |
B. Dwork, Differential operators with nilponent $p$-curvature,, Amer. J. Math., 112 (1990), 749.
doi: 10.2307/2374806. |
[10] |
A. Elipe, J. Hietarinta and S. Tompaidis, Comment on paper by S. Kasperczuk, Celest. Mech 58:387-391(1994),, Celest. Mech. Dynam. Astr., 62 (1995), 191.
doi: 10.1007/BF00692087. |
[11] |
R. Fridberg, T. D. Lee and R. Padjen, Class of scalar-field solutions in three space dimensions,, Phys. Rev. D., 13 (1976), 2739.
|
[12] |
G. H. Halphen, Traité des fonctions elliptiques VOl. I, II,, Gauthier-Villars, (1888). Google Scholar |
[13] |
J. Hietarinta, Direct methods for the search of the second invariant,, Phys. Rep., 147 (1987), 87.
doi: 10.1016/0370-1573(87)90089-5. |
[14] |
S. Kasperczuk, Integrability of the Yang-Mills Hamiltonian system,, Celest. Mech. Dynam. Astr., 58 (1994), 387.
|
[15] |
W. L. Li and S. Y. Shi, Non-integrability of Hénon-Heiles System,, Celest. Mech. Dynam. Astr., 109 (2010), 1.
|
[16] |
A. J. Maciejewski, M. Przybylska, T. Stachowiak and M. Szydlowski, Global integrability of cosmological scalar fields,, J. Phys. A., 41 (2008).
|
[17] |
A. J. Maciejewski, M. Przybylska and J. A. Weil, Non-integrability of the generalized spring-pendulum problem,, J. Phys. A., 37 (2004), 2579.
|
[18] |
A. J. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential,, J. Math. Phys., 46 (2005).
|
[19] |
S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves,, Soviet Phys. JETP., 38 (1974), 248. Google Scholar |
[20] |
J. J. Morales-Ruiz, "Técnicas Algebraicas Para el Estudio de la Integrabilidad de Sistemas Hamiltonianos,", Ph.D. Thesis, (1989). Google Scholar |
[21] |
J. J. Morales-Ruiz and C. Simó, Picard-Vessiot theory and Ziglin's theory,, J. Differential Equations, 107 (1994), 140.
|
[22] |
J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,", Birkhäuser Verlag, (1999).
|
[23] |
J. J. Morales-Ruiz and C. Simó, Non-integrability criteria for Hamiltonians in the case of Lamé normal variational equations,, J. Differential Equations, 129 (1996), 111.
|
[24] |
J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem,, Ergod. Th & Dynam. Sys., 25 (2005), 1237.
|
[25] |
J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Annales Scientifiques de l'école Normale Supéieure, 40 (2007), 845.
|
[26] |
J. J. Morales-Ruiz and S. Simon, On the meromorphic non-integrability of some $N$-body problems,, Discrete Contin. Dyn. Syst., 24 (2009), 1225.
|
[27] |
E. G. C. Poole, "Introduction to the Theory of Linear Differential Equations,", Oxford Univ. Press, (1936). Google Scholar |
[28] |
R. Rajaraman and E. J. Weinberg, Internal symmetry and the semi-classical method in quantum field theory,, Phys. Rev. D., 11 (1975), 2950. Google Scholar |
[29] |
Van der Put M and M. F. Singer, "Galois Theory of Linear Differential Equations,", volume 328 of Grundlehren der mathematischen Wissenshaften. Springer. Heidelberg, (2003).
|
[30] |
P. Vanhaecke, A special case of the Garnier system, (1,4)-polarised Abelian surfaces and their moduli,, Compositio Math., 29 (1994), 157.
doi: 10.1016/0165-0270(94)90123-6. |
[31] |
E. T. Whittaker and E. T. Watson, "A Course of Modern Analysis,", Cambrige Univ. Press, (1969). Google Scholar |
[32] |
V. E. Zakharv, M. F. Ivanov and L. I. Shoor, On anomalously slow stochastization in certain two-dimensional models of field theory,, Zh. Eksp. Teor. Fiz. Lett., 30 (1979), 39. Google Scholar |
[33] |
S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, II,, Funct. Anal. Appl., 16 (1983), 181. Google Scholar |
[1] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[2] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[3] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[4] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296 |
[5] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[6] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[7] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[8] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[9] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[10] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[11] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[12] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[13] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021003 |
[14] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[15] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[16] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[17] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[18] |
Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025 |
[19] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[20] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]